array(203) { [0]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "12" ["ques_text"]=> string(17280) "

The parameter, on which the value of the determinant

Does not depend upon, is

" ["question_id"]=> string(3) "144" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(3) "573" ["question_id"]=> string(3) "144" ["opt_desc"]=> string(13) "

a

" } [1]=> array(3) { ["option_id"]=> string(3) "574" ["question_id"]=> string(3) "144" ["opt_desc"]=> string(13) "

d

" } [2]=> array(3) { ["option_id"]=> string(3) "575" ["question_id"]=> string(3) "144" ["opt_desc"]=> string(13) "

p

" } [3]=> array(3) { ["option_id"]=> string(3) "576" ["question_id"]=> string(3) "144" ["opt_desc"]=> string(13) "

x

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "148" ["question_id"]=> string(3) "144" ["option_id"]=> string(3) "575" } } } [1]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "12" ["ques_text"]=> string(12731) "

The number of distinct real roots of

in the interval -π4xπ4is

" ["question_id"]=> string(3) "146" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(3) "581" ["question_id"]=> string(3) "146" ["opt_desc"]=> string(13) "

1

" } [1]=> array(3) { ["option_id"]=> string(3) "582" ["question_id"]=> string(3) "146" ["opt_desc"]=> string(13) "

0

" } [2]=> array(3) { ["option_id"]=> string(3) "583" ["question_id"]=> string(3) "146" ["opt_desc"]=> string(13) "

3

" } [3]=> array(3) { ["option_id"]=> string(3) "584" ["question_id"]=> string(3) "146" ["opt_desc"]=> string(13) "

2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "150" ["question_id"]=> string(3) "146" ["option_id"]=> string(3) "581" } } } [2]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "12" ["ques_text"]=> string(9305) "

The determinant= 0, if

" ["question_id"]=> string(3) "156" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(3) "621" ["question_id"]=> string(3) "156" ["opt_desc"]=> string(29) "

x, y, z are in AP

" } [1]=> array(3) { ["option_id"]=> string(3) "622" ["question_id"]=> string(3) "156" ["opt_desc"]=> string(29) "

x, y, z are in HP

" } [2]=> array(3) { ["option_id"]=> string(3) "623" ["question_id"]=> string(3) "156" ["opt_desc"]=> string(29) "

x, y, z are in GP

" } [3]=> array(3) { ["option_id"]=> string(3) "624" ["question_id"]=> string(3) "156" ["opt_desc"]=> string(32) "

xy, yz, zx are in AP

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "160" ["question_id"]=> string(3) "156" ["option_id"]=> string(3) "623" } } } [3]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "12" ["ques_text"]=> string(12808) "

If f(x) =

then f (100) is equal to

" ["question_id"]=> string(3) "157" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(3) "625" ["question_id"]=> string(3) "157" ["opt_desc"]=> string(13) "

1

" } [1]=> array(3) { ["option_id"]=> string(3) "626" ["question_id"]=> string(3) "157" ["opt_desc"]=> string(13) "

0

" } [2]=> array(3) { ["option_id"]=> string(3) "627" ["question_id"]=> string(3) "157" ["opt_desc"]=> string(16) "

-100

" } [3]=> array(3) { ["option_id"]=> string(3) "628" ["question_id"]=> string(3) "157" ["opt_desc"]=> string(15) "

100

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "161" ["question_id"]=> string(3) "157" ["option_id"]=> string(3) "626" } } } [4]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "12" ["ques_text"]=> string(639) "

If A=α22α

andA3=125,then value of α is

" ["question_id"]=> string(3) "159" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(3) "633" ["question_id"]=> string(3) "159" ["opt_desc"]=> string(21) "

±1

" } [1]=> array(3) { ["option_id"]=> string(3) "634" ["question_id"]=> string(3) "159" ["opt_desc"]=> string(21) "

±3

" } [2]=> array(3) { ["option_id"]=> string(3) "635" ["question_id"]=> string(3) "159" ["opt_desc"]=> string(21) "

±2

" } [3]=> array(3) { ["option_id"]=> string(3) "636" ["question_id"]=> string(3) "159" ["opt_desc"]=> string(21) "

±5

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "163" ["question_id"]=> string(3) "159" ["option_id"]=> string(3) "634" } } } [5]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "18" ["ques_text"]=> string(14003) "

If α, β ≠ 0 and f(n) = αn + βn and

= K(1 - α)2 (1 – β)2 (α – β)2,then K is equal to

" ["question_id"]=> string(3) "231" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(3) "921" ["question_id"]=> string(3) "231" ["opt_desc"]=> string(90) "

αβ

" } [1]=> array(3) { ["option_id"]=> string(3) "922" ["question_id"]=> string(3) "231" ["opt_desc"]=> string(14) "

-1

" } [2]=> array(3) { ["option_id"]=> string(3) "923" ["question_id"]=> string(3) "231" ["opt_desc"]=> string(115) "

1αβ

" } [3]=> array(3) { ["option_id"]=> string(3) "924" ["question_id"]=> string(3) "231" ["opt_desc"]=> string(13) "

1

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "235" ["question_id"]=> string(3) "231" ["option_id"]=> string(3) "924" } } } [6]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "18" ["ques_text"]=> string(9380) "

The determinant

is equal to zero, then

" ["question_id"]=> string(3) "233" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(3) "929" ["question_id"]=> string(3) "233" ["opt_desc"]=> string(29) "

a, b, c are in AP

" } [1]=> array(3) { ["option_id"]=> string(3) "930" ["question_id"]=> string(3) "233" ["opt_desc"]=> string(29) "

a, b, c are in HP

" } [2]=> array(3) { ["option_id"]=> string(3) "931" ["question_id"]=> string(3) "233" ["opt_desc"]=> string(29) "

a, b, c are in GP

" } [3]=> array(3) { ["option_id"]=> string(3) "932" ["question_id"]=> string(3) "233" ["opt_desc"]=> string(71) "

(x – α) is a factor of ax2 + 2bx + c

" } } ["Answer"]=> array(2) { [0]=> array(3) { ["answer_id"]=> string(3) "237" ["question_id"]=> string(3) "233" ["option_id"]=> string(3) "931" } [1]=> array(3) { ["answer_id"]=> string(3) "238" ["question_id"]=> string(3) "233" ["option_id"]=> string(3) "932" } } } [7]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "18" ["ques_text"]=> string(3956) "

If the adjoint of a 3 x 3 matrix P is

then the possible value(s) of the determinant of P is/are

" ["question_id"]=> string(3) "235" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(3) "937" ["question_id"]=> string(3) "235" ["opt_desc"]=> string(14) "

-2

" } [1]=> array(3) { ["option_id"]=> string(3) "938" ["question_id"]=> string(3) "235" ["opt_desc"]=> string(13) "

1

" } [2]=> array(3) { ["option_id"]=> string(3) "939" ["question_id"]=> string(3) "235" ["opt_desc"]=> string(14) "

-1

" } [3]=> array(3) { ["option_id"]=> string(3) "940" ["question_id"]=> string(3) "235" ["opt_desc"]=> string(13) "

2

" } } ["Answer"]=> array(2) { [0]=> array(3) { ["answer_id"]=> string(3) "240" ["question_id"]=> string(3) "235" ["option_id"]=> string(3) "937" } [1]=> array(3) { ["answer_id"]=> string(3) "241" ["question_id"]=> string(3) "235" ["option_id"]=> string(3) "940" } } } [8]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(1) "6" ["ques_text"]=> string(154) "

If A and B are two sets such that A and 12 elements, B has 17 elements and A ∪ B has 21 elements, then number of elements in A ∩ B are

" ["question_id"]=> string(3) "325" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "1291" ["question_id"]=> string(3) "325" ["opt_desc"]=> string(13) "

8

" } [1]=> array(3) { ["option_id"]=> string(4) "1292" ["question_id"]=> string(3) "325" ["opt_desc"]=> string(13) "

6

" } [2]=> array(3) { ["option_id"]=> string(4) "1293" ["question_id"]=> string(3) "325" ["opt_desc"]=> string(13) "

4

" } [3]=> array(3) { ["option_id"]=> string(4) "1294" ["question_id"]=> string(3) "325" ["opt_desc"]=> string(25) "

none of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "340" ["question_id"]=> string(3) "325" ["option_id"]=> string(4) "1291" } } } [9]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(1) "6" ["ques_text"]=> string(236) "

In a class of 25 students, 12 have taken mathematics, 8 have taken mathematics but not biology. If each student has taken either mathematics or biology or both, then the number of students who have taken both the subjects is

" ["question_id"]=> string(3) "334" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "1327" ["question_id"]=> string(3) "334" ["opt_desc"]=> string(13) "

8

" } [1]=> array(3) { ["option_id"]=> string(4) "1328" ["question_id"]=> string(3) "334" ["opt_desc"]=> string(14) "

13

" } [2]=> array(3) { ["option_id"]=> string(4) "1329" ["question_id"]=> string(3) "334" ["opt_desc"]=> string(13) "

0

" } [3]=> array(3) { ["option_id"]=> string(4) "1330" ["question_id"]=> string(3) "334" ["opt_desc"]=> string(13) "

4

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "349" ["question_id"]=> string(3) "334" ["option_id"]=> string(4) "1330" } } } [10]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "25" ["ques_text"]=> string(199) "

Two point charges +2C and +6C repel each other with a force of 12 Newtons. If a charge of – 4C is given to each of these charges the force now is

" ["question_id"]=> string(3) "346" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "1375" ["question_id"]=> string(3) "346" ["opt_desc"]=> string(13) "

0

" } [1]=> array(3) { ["option_id"]=> string(4) "1376" ["question_id"]=> string(3) "346" ["opt_desc"]=> string(28) "

4 N (attractive)

" } [2]=> array(3) { ["option_id"]=> string(4) "1377" ["question_id"]=> string(3) "346" ["opt_desc"]=> string(28) "

8 N (attractive)

" } [3]=> array(3) { ["option_id"]=> string(4) "1378" ["question_id"]=> string(3) "346" ["opt_desc"]=> string(36) "

8 N (repulsive)

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "361" ["question_id"]=> string(3) "346" ["option_id"]=> string(4) "1376" } } } [11]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "21" ["ques_text"]=> string(11358) "

The packing efficiency of the two-dimensional square unit cell shown below

" ["question_id"]=> string(3) "370" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "1471" ["question_id"]=> string(3) "370" ["opt_desc"]=> string(18) "

68.02%

" } [1]=> array(3) { ["option_id"]=> string(4) "1472" ["question_id"]=> string(3) "370" ["opt_desc"]=> string(18) "

39.27%

" } [2]=> array(3) { ["option_id"]=> string(4) "1473" ["question_id"]=> string(3) "370" ["opt_desc"]=> string(18) "

78.54%

" } [3]=> array(3) { ["option_id"]=> string(4) "1474" ["question_id"]=> string(3) "370" ["opt_desc"]=> string(18) "

74.05%

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "385" ["question_id"]=> string(3) "370" ["option_id"]=> string(4) "1473" } } } [12]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "21" ["ques_text"]=> string(65535) "

A compound MpXq has cubic close packing (ccp) arrangement of X. Its unit cell structure is shown below

The empirical formula of the compound,  is

string(3) "373" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "1483" ["question_id"]=> string(3) "373" ["opt_desc"]=> string(26) "

MX2

" } [1]=> array(3) { ["option_id"]=> string(4) "1484" ["question_id"]=> string(3) "373" ["opt_desc"]=> string(14) "

MX

" } [2]=> array(3) { ["option_id"]=> string(4) "1485" ["question_id"]=> string(3) "373" ["opt_desc"]=> string(38) "

M5X4

" } [3]=> array(3) { ["option_id"]=> string(4) "1486" ["question_id"]=> string(3) "373" ["opt_desc"]=> string(26) "

M2X

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "388" ["question_id"]=> string(3) "373" ["option_id"]=> string(4) "1483" } } } [13]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "21" ["ques_text"]=> string(18250) "

The arrangement of X- ions around A+ io in solid AX is given in the figure (not drawn to scale). If the radius of X- is 250 pm, the radius of A+ is

" ["question_id"]=> string(3) "375" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "1491" ["question_id"]=> string(3) "375" ["opt_desc"]=> string(18) "

125 pm

" } [1]=> array(3) { ["option_id"]=> string(4) "1492" ["question_id"]=> string(3) "375" ["opt_desc"]=> string(18) "

104 pm

" } [2]=> array(3) { ["option_id"]=> string(4) "1493" ["question_id"]=> string(3) "375" ["opt_desc"]=> string(18) "

155 pm

" } [3]=> array(3) { ["option_id"]=> string(4) "1494" ["question_id"]=> string(3) "375" ["opt_desc"]=> string(18) "

158 pm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "390" ["question_id"]=> string(3) "375" ["option_id"]=> string(4) "1492" } } } [14]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "32" ["ques_text"]=> string(120) "

Atomic radius of aluminium is 120 pm. If aluminium has a fcc structure, the edge length of the unit cell is:

" ["question_id"]=> string(3) "439" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "1745" ["question_id"]=> string(3) "439" ["opt_desc"]=> string(20) "

280.0 pm

" } [1]=> array(3) { ["option_id"]=> string(4) "1746" ["question_id"]=> string(3) "439" ["opt_desc"]=> string(20) "

339.41pm

" } [2]=> array(3) { ["option_id"]=> string(4) "1747" ["question_id"]=> string(3) "439" ["opt_desc"]=> string(19) "

425.5pm

" } [3]=> array(3) { ["option_id"]=> string(4) "1748" ["question_id"]=> string(3) "439" ["opt_desc"]=> string(17) "

260pm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "454" ["question_id"]=> string(3) "439" ["option_id"]=> string(4) "1746" } } } [15]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "42" ["ques_text"]=> string(6454) "

A constant force F is applied in horizontal direction as shown. Contact force between M and m is N and between m and M’ is N’ then

" ["question_id"]=> string(3) "446" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "1773" ["question_id"]=> string(3) "446" ["opt_desc"]=> string(37) "

N or  N’ equal

" } [1]=> array(3) { ["option_id"]=> string(4) "1774" ["question_id"]=> string(3) "446" ["opt_desc"]=> string(27) "

N > N’

" } [2]=> array(3) { ["option_id"]=> string(4) "1775" ["question_id"]=> string(3) "446" ["opt_desc"]=> string(27) "

N’ > N

" } [3]=> array(3) { ["option_id"]=> string(4) "1776" ["question_id"]=> string(3) "446" ["opt_desc"]=> string(29) "

Insufficient Data

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "461" ["question_id"]=> string(3) "446" ["option_id"]=> string(4) "1774" } } } [16]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "43" ["ques_text"]=> string(18601) "

In figure are shown charges q1 = + 2 × 10–8 C and q2 = – 0.4 × 10–8 C. A charge q3 = 0.2 × 10–8 C in moved along the arc of a circle from C to D. The potential energy of q3                                      [CPMT 1986]

" ["question_id"]=> string(3) "459" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "1825" ["question_id"]=> string(3) "459" ["opt_desc"]=> string(46) "

Will increase approximately by 76%

" } [1]=> array(3) { ["option_id"]=> string(4) "1826" ["question_id"]=> string(3) "459" ["opt_desc"]=> string(47) "

Will decreases approximately by 76%

" } [2]=> array(3) { ["option_id"]=> string(4) "1827" ["question_id"]=> string(3) "459" ["opt_desc"]=> string(28) "

Will remain same

" } [3]=> array(3) { ["option_id"]=> string(4) "1828" ["question_id"]=> string(3) "459" ["opt_desc"]=> string(47) "

Will increases approximately by 12%

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "474" ["question_id"]=> string(3) "459" ["option_id"]=> string(4) "1826" } } } [17]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "48" ["ques_text"]=> string(14107) "

The field pattern which is not possible is given by

" ["question_id"]=> string(3) "592" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "2351" ["question_id"]=> string(3) "592" ["opt_desc"]=> string(13) "

d

" } [1]=> array(3) { ["option_id"]=> string(4) "2352" ["question_id"]=> string(3) "592" ["opt_desc"]=> string(13) "

c

" } [2]=> array(3) { ["option_id"]=> string(4) "2353" ["question_id"]=> string(3) "592" ["opt_desc"]=> string(13) "

b

" } [3]=> array(3) { ["option_id"]=> string(4) "2354" ["question_id"]=> string(3) "592" ["opt_desc"]=> string(13) "

a

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "607" ["question_id"]=> string(3) "592" ["option_id"]=> string(4) "2351" } } } [18]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "56" ["ques_text"]=> string(3509) "

Due to an electric dipole shown in fig., the electric field intensity is parallel to dipole axis :

" ["question_id"]=> string(3) "605" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "2399" ["question_id"]=> string(3) "605" ["opt_desc"]=> string(21) "

at P only

" } [1]=> array(3) { ["option_id"]=> string(4) "2400" ["question_id"]=> string(3) "605" ["opt_desc"]=> string(21) "

at Q only

" } [2]=> array(3) { ["option_id"]=> string(4) "2401" ["question_id"]=> string(3) "605" ["opt_desc"]=> string(30) "

both at P and at Q

" } [3]=> array(3) { ["option_id"]=> string(4) "2402" ["question_id"]=> string(3) "605" ["opt_desc"]=> string(33) "

neither at P nor at Q

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "620" ["question_id"]=> string(3) "605" ["option_id"]=> string(4) "2401" } } } [19]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "58" ["ques_text"]=> string(7767) "

Does this graph represents correct relation for a capacitor.

" ["question_id"]=> string(3) "625" } ["Option"]=> array(2) { [0]=> array(3) { ["option_id"]=> string(4) "2475" ["question_id"]=> string(3) "625" ["opt_desc"]=> string(16) "

True

" } [1]=> array(3) { ["option_id"]=> string(4) "2476" ["question_id"]=> string(3) "625" ["opt_desc"]=> string(17) "

False

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "648" ["question_id"]=> string(3) "625" ["option_id"]=> string(4) "2475" } } } [20]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "71" ["ques_text"]=> string(6744) "

In the figure a carbon resistor has band of different colours on its body. The resistance of the following body is [Kerala PET 2002]

" ["question_id"]=> string(3) "732" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "2901" ["question_id"]=> string(3) "732" ["opt_desc"]=> string(27) "

2.2 k?

" } [1]=> array(3) { ["option_id"]=> string(4) "2902" ["question_id"]=> string(3) "732" ["opt_desc"]=> string(27) "

3.3 k?

" } [2]=> array(3) { ["option_id"]=> string(4) "2903" ["question_id"]=> string(3) "732" ["opt_desc"]=> string(27) "

5.6 k?

" } [3]=> array(3) { ["option_id"]=> string(4) "2904" ["question_id"]=> string(3) "732" ["opt_desc"]=> string(26) "

9.1k?

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "755" ["question_id"]=> string(3) "732" ["option_id"]=> string(4) "2904" } } } [21]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "73" ["ques_text"]=> string(236) "

The specific conductance of a 0.1 N KCl solution at 23°C is 0.012 ohm-1 cm-1. The resistance of cell containing the solution at the same temperature was found to be 55 ohm. The cell constant will be

" ["question_id"]=> string(3) "754" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "2989" ["question_id"]=> string(3) "754" ["opt_desc"]=> string(33) "

0.142 cm-1

" } [1]=> array(3) { ["option_id"]=> string(4) "2990" ["question_id"]=> string(3) "754" ["opt_desc"]=> string(32) "

0.66 cm-1

" } [2]=> array(3) { ["option_id"]=> string(4) "2991" ["question_id"]=> string(3) "754" ["opt_desc"]=> string(33) "

0.918 cm-1

" } [3]=> array(3) { ["option_id"]=> string(4) "2992" ["question_id"]=> string(3) "754" ["opt_desc"]=> string(32) "

1.12 cm-1

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "777" ["question_id"]=> string(3) "754" ["option_id"]=> string(4) "2990" } } } [22]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "73" ["ques_text"]=> string(252) "

The equivalent conductances of Ba+2 and Cl- are 127 and 76 ohm-1 cm-1 eq-1 respectively at infinite dilution. The equivalent conductance of BaCl2 at infinite dilution will be

" ["question_id"]=> string(3) "755" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "2993" ["question_id"]=> string(3) "755" ["opt_desc"]=> string(18) "

139.52

" } [1]=> array(3) { ["option_id"]=> string(4) "2994" ["question_id"]=> string(3) "755" ["opt_desc"]=> string(15) "

203

" } [2]=> array(3) { ["option_id"]=> string(4) "2995" ["question_id"]=> string(3) "755" ["opt_desc"]=> string(15) "

279

" } [3]=> array(3) { ["option_id"]=> string(4) "2996" ["question_id"]=> string(3) "755" ["opt_desc"]=> string(17) "

101.5

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "778" ["question_id"]=> string(3) "755" ["option_id"]=> string(4) "2993" } } } [23]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "74" ["ques_text"]=> string(1767) "

The graph shows the behaviour of a length of wire in the region for which the substance obeys Hooke’s law. P and Q represent

" ["question_id"]=> string(3) "774" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "3069" ["question_id"]=> string(3) "774" ["opt_desc"]=> string(62) "

P = applied force, Q = extension

" } [1]=> array(3) { ["option_id"]=> string(4) "3070" ["question_id"]=> string(3) "774" ["opt_desc"]=> string(62) "

P = extension, Q = applied force

" } [2]=> array(3) { ["option_id"]=> string(4) "3071" ["question_id"]=> string(3) "774" ["opt_desc"]=> string(70) "

P = extension, Q = stored elastic energy

" } [3]=> array(3) { ["option_id"]=> string(4) "3072" ["question_id"]=> string(3) "774" ["opt_desc"]=> string(70) "

P = stored elastic energy, Q = extension

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "797" ["question_id"]=> string(3) "774" ["option_id"]=> string(4) "3071" } } } [24]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "71" ["ques_text"]=> string(4346) "

In the adjoining circuit, the battery E1 has as emf of 12 volt and zero internal resistance, while the battery E has an emf of 2 volt. If the galvanometer reads zero, then the value of resistance X ohm is   [NCERT 1990]

" ["question_id"]=> string(3) "781" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "3093" ["question_id"]=> string(3) "781" ["opt_desc"]=> string(14) "

10

" } [1]=> array(3) { ["option_id"]=> string(4) "3094" ["question_id"]=> string(3) "781" ["opt_desc"]=> string(15) "

100

" } [2]=> array(3) { ["option_id"]=> string(4) "3095" ["question_id"]=> string(3) "781" ["opt_desc"]=> string(15) "

500

" } [3]=> array(3) { ["option_id"]=> string(4) "3096" ["question_id"]=> string(3) "781" ["opt_desc"]=> string(15) "

200

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "804" ["question_id"]=> string(3) "781" ["option_id"]=> string(4) "3094" } } } [25]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "71" ["ques_text"]=> string(3159) "

The magnitude and direction of the current in the circuit shown will be   [CPMT 1986, 88]

" ["question_id"]=> string(3) "782" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "3097" ["question_id"]=> string(3) "782" ["opt_desc"]=> string(67) "

(7/3)A from a to b through e

" } [1]=> array(3) { ["option_id"]=> string(4) "3098" ["question_id"]=> string(3) "782" ["opt_desc"]=> string(68) "

(7/3)A from b and a through e

" } [2]=> array(3) { ["option_id"]=> string(4) "3099" ["question_id"]=> string(3) "782" ["opt_desc"]=> string(75) "

1.0 A from b to a through e

" } [3]=> array(3) { ["option_id"]=> string(4) "3100" ["question_id"]=> string(3) "782" ["opt_desc"]=> string(75) "

1.0 A from a to b through e

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "805" ["question_id"]=> string(3) "782" ["option_id"]=> string(4) "3100" } } } [26]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "71" ["ques_text"]=> string(5205) "

What will be the equivalent resistance of circuit shown in figure between points A and D           [CBSE PMT 1996]

" ["question_id"]=> string(3) "783" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "3101" ["question_id"]=> string(3) "783" ["opt_desc"]=> string(14) "

10

" } [1]=> array(3) { ["option_id"]=> string(4) "3102" ["question_id"]=> string(3) "783" ["opt_desc"]=> string(14) "

20

" } [2]=> array(3) { ["option_id"]=> string(4) "3103" ["question_id"]=> string(3) "783" ["opt_desc"]=> string(14) "

30

" } [3]=> array(3) { ["option_id"]=> string(4) "3104" ["question_id"]=> string(3) "783" ["opt_desc"]=> string(14) "

40

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "806" ["question_id"]=> string(3) "783" ["option_id"]=> string(4) "3103" } } } [27]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "77" ["ques_text"]=> string(165) "

One litre hard water contains 12.00 mg Mg2+. mili-equivalents of washing soda required to remove its hardness is [1988] 

" ["question_id"]=> string(3) "800" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "3169" ["question_id"]=> string(3) "800" ["opt_desc"]=> string(19) "

 1

" } [1]=> array(3) { ["option_id"]=> string(4) "3170" ["question_id"]=> string(3) "800" ["opt_desc"]=> string(17) "

12.16

" } [2]=> array(3) { ["option_id"]=> string(4) "3171" ["question_id"]=> string(3) "800" ["opt_desc"]=> string(31) "

1 x 10-3

" } [3]=> array(3) { ["option_id"]=> string(4) "3172" ["question_id"]=> string(3) "800" ["opt_desc"]=> string(35) "

12.16 x 10-3

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "824" ["question_id"]=> string(3) "800" ["option_id"]=> string(4) "3169" } } } [28]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "88" ["ques_text"]=> string(2569) "

The relationship between force and position is shown in the figure given (in one dimensional case). The work done by the force in displacing a body from x=1 cm to x= 5 cm is                            [CPMT 1976]

" ["question_id"]=> string(3) "943" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "3733" ["question_id"]=> string(3) "943" ["opt_desc"]=> string(19) "

20 ergs

" } [1]=> array(3) { ["option_id"]=> string(4) "3734" ["question_id"]=> string(3) "943" ["opt_desc"]=> string(19) "

60 ergs

" } [2]=> array(3) { ["option_id"]=> string(4) "3735" ["question_id"]=> string(3) "943" ["opt_desc"]=> string(19) "

70 ergs

" } [3]=> array(3) { ["option_id"]=> string(4) "3736" ["question_id"]=> string(3) "943" ["opt_desc"]=> string(20) "

700 ergs

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "967" ["question_id"]=> string(3) "943" ["option_id"]=> string(4) "3733" } } } [29]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "94" ["ques_text"]=> string(6071) "

Name of the compound given below

" ["question_id"]=> string(4) "1010" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "3997" ["question_id"]=> string(4) "1010" ["opt_desc"]=> string(31) "

2, 3-diethylheptane

" } [1]=> array(3) { ["option_id"]=> string(4) "3998" ["question_id"]=> string(4) "1010" ["opt_desc"]=> string(34) "

5-ethyl-6-methyloctane

" } [2]=> array(3) { ["option_id"]=> string(4) "3999" ["question_id"]=> string(4) "1010" ["opt_desc"]=> string(34) "

4-ethyl-3-methyloctane

" } [3]=> array(3) { ["option_id"]=> string(4) "4000" ["question_id"]=> string(4) "1010" ["opt_desc"]=> string(33) "

3-metyl-4-ethyloctane

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1034" ["question_id"]=> string(4) "1010" ["option_id"]=> string(4) "3999" } } } [30]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "94" ["ques_text"]=> string(3844) "

The chirality of the compound

" ["question_id"]=> string(4) "1014" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "4013" ["question_id"]=> string(4) "1014" ["opt_desc"]=> string(13) "

R

" } [1]=> array(3) { ["option_id"]=> string(4) "4014" ["question_id"]=> string(4) "1014" ["opt_desc"]=> string(13) "

S

" } [2]=> array(3) { ["option_id"]=> string(4) "4015" ["question_id"]=> string(4) "1014" ["opt_desc"]=> string(13) "

Z

" } [3]=> array(3) { ["option_id"]=> string(4) "4016" ["question_id"]=> string(4) "1014" ["opt_desc"]=> string(13) "

E

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1038" ["question_id"]=> string(4) "1014" ["option_id"]=> string(4) "4013" } } } [31]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "94" ["ques_text"]=> string(4730) "

The state of hybridization of C2, C3, C5 and C6 of the hydrocarbon,

Is in the following sequence

" ["question_id"]=> string(4) "1017" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "4025" ["question_id"]=> string(4) "1017" ["opt_desc"]=> string(65) "

sp, sp3, sp2 and sp3

" } [1]=> array(3) { ["option_id"]=> string(4) "4026" ["question_id"]=> string(4) "1017" ["opt_desc"]=> string(65) "

sp3, sp2, sp2 and sp

" } [2]=> array(3) { ["option_id"]=> string(4) "4027" ["question_id"]=> string(4) "1017" ["opt_desc"]=> string(65) "

sp, sp2, sp2 and sp3

" } [3]=> array(3) { ["option_id"]=> string(4) "4028" ["question_id"]=> string(4) "1017" ["opt_desc"]=> string(65) "

sp, sp2, sp3 and sp2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1041" ["question_id"]=> string(4) "1017" ["option_id"]=> string(4) "4025" } } } [32]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "113" ["ques_text"]=> string(98) "

If two vectors of equal magnitude are placed at 120 degree their resultant is equal to

" ["question_id"]=> string(4) "1271" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "5015" ["question_id"]=> string(4) "1271" ["opt_desc"]=> string(51) "

equal to the magnitude of either vector

" } [1]=> array(3) { ["option_id"]=> string(4) "5016" ["question_id"]=> string(4) "1271" ["opt_desc"]=> string(62) "

two times to the magnitude of either of the vector

" } [2]=> array(3) { ["option_id"]=> string(4) "5017" ["question_id"]=> string(4) "1271" ["opt_desc"]=> string(199) "

2 times to the magnitude of either of the vector

" } [3]=> array(3) { ["option_id"]=> string(4) "5018" ["question_id"]=> string(4) "1271" ["opt_desc"]=> string(63) "

half of  the magnitude of either of the vector

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1301" ["question_id"]=> string(4) "1271" ["option_id"]=> string(4) "5015" } } } [33]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "117" ["ques_text"]=> string(6245) "

Two inclined frictionless tracks of different inclinations (q1 < q2) meet at A from where two blocks P and Q of different masses are allowed to slide down from rest at the same time, one on each track as shown in fig.

" ["question_id"]=> string(4) "1315" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "5189" ["question_id"]=> string(4) "1315" ["opt_desc"]=> string(62) "

Both blocks will reach the bottom at the same time

" } [1]=> array(3) { ["option_id"]=> string(4) "5190" ["question_id"]=> string(4) "1315" ["opt_desc"]=> string(80) "

Block Q will reach the bottom earlier than block P

" } [2]=> array(3) { ["option_id"]=> string(4) "5191" ["question_id"]=> string(4) "1315" ["opt_desc"]=> string(60) "

Both blocks reach the bottom with the same speed

" } [3]=> array(3) { ["option_id"]=> string(4) "5192" ["question_id"]=> string(4) "1315" ["opt_desc"]=> string(91) "

Block Q will each the bottom with a higher speed that block P

" } } ["Answer"]=> array(2) { [0]=> array(3) { ["answer_id"]=> string(4) "1347" ["question_id"]=> string(4) "1315" ["option_id"]=> string(4) "5190" } [1]=> array(3) { ["answer_id"]=> string(4) "1348" ["question_id"]=> string(4) "1315" ["option_id"]=> string(4) "5191" } } } [34]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "41" ["ques_text"]=> string(2344) "

Two masses M and m are connected by a weight less string. They are pulled by a force F on a frictionless horizontal surface. The tension in the string will be

" ["question_id"]=> string(4) "1362" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "5377" ["question_id"]=> string(4) "1362" ["opt_desc"]=> string(22) "

FM/(m + M)

" } [1]=> array(3) { ["option_id"]=> string(4) "5378" ["question_id"]=> string(4) "1362" ["opt_desc"]=> string(21) "

F/(M + m)

" } [2]=> array(3) { ["option_id"]=> string(4) "5379" ["question_id"]=> string(4) "1362" ["opt_desc"]=> string(16) "

FM/m

" } [3]=> array(3) { ["option_id"]=> string(4) "5380" ["question_id"]=> string(4) "1362" ["opt_desc"]=> string(22) "

Fm/(M + m)

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1395" ["question_id"]=> string(4) "1362" ["option_id"]=> string(4) "5377" } } } [35]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "41" ["ques_text"]=> string(308) "

A cricket ball of mass 150 gm is moving with a velocity of 12 m/s and is hit by a bat so that the ball is turned back with a velocity of 20 m/s. The force of blow acts for 0.01s on the ball. The average force exerted by the bat on the ball is

" ["question_id"]=> string(4) "1369" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "5405" ["question_id"]=> string(4) "1369" ["opt_desc"]=> string(26) "

480 N

" } [1]=> array(3) { ["option_id"]=> string(4) "5406" ["question_id"]=> string(4) "1369" ["opt_desc"]=> string(26) "

600 N

" } [2]=> array(3) { ["option_id"]=> string(4) "5407" ["question_id"]=> string(4) "1369" ["opt_desc"]=> string(26) "

500 N

" } [3]=> array(3) { ["option_id"]=> string(4) "5408" ["question_id"]=> string(4) "1369" ["opt_desc"]=> string(26) "

400 N

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1402" ["question_id"]=> string(4) "1369" ["option_id"]=> string(4) "5405" } } } [36]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "126" ["ques_text"]=> string(1126) "

ForxR,limxx-3x+2xis       equal     to            [ 2000,2M]

" ["question_id"]=> string(4) "1453" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "5741" ["question_id"]=> string(4) "1453" ["opt_desc"]=> string(13) "

e

" } [1]=> array(3) { ["option_id"]=> string(4) "5742" ["question_id"]=> string(4) "1453" ["opt_desc"]=> string(26) "

e-1

" } [2]=> array(3) { ["option_id"]=> string(4) "5743" ["question_id"]=> string(4) "1453" ["opt_desc"]=> string(26) "

e-5

" } [3]=> array(3) { ["option_id"]=> string(4) "5744" ["question_id"]=> string(4) "1453" ["opt_desc"]=> string(25) "

e5

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1486" ["question_id"]=> string(4) "1453" ["option_id"]=> string(4) "5743" } } } [37]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "13" ["ques_text"]=> string(291) "

One litre hard water contains 12.00 mg Mg2+ Milliequivalents of washing soda required to remove its hardness is                          (1988)

" ["question_id"]=> string(4) "1551" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6131" ["question_id"]=> string(4) "1551" ["opt_desc"]=> string(13) "

1

" } [1]=> array(3) { ["option_id"]=> string(4) "6132" ["question_id"]=> string(4) "1551" ["opt_desc"]=> string(17) "

12.16

" } [2]=> array(3) { ["option_id"]=> string(4) "6133" ["question_id"]=> string(4) "1551" ["opt_desc"]=> string(54) "

1 x 10-312.16 x 10-3

" } [3]=> array(3) { ["option_id"]=> string(4) "6134" ["question_id"]=> string(4) "1551" ["opt_desc"]=> string(35) "

12.16 x 10-3

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1588" ["question_id"]=> string(4) "1551" ["option_id"]=> string(4) "6131" } } } [38]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "13" ["ques_text"]=> string(684) "

Liquid benzene (C6H6) burns in oxygen according to the equation

2C6H6(l) + 1502(g) --> 12CO2(g)+ 6H2O(g)

How many liters of O2 at STP are needed to complete the combustion of 39 g liquid benzene?

(Mol wt of O2 = 32, C6H6 = 78)                                                (1996)

" ["question_id"]=> string(4) "1563" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6179" ["question_id"]=> string(4) "1563" ["opt_desc"]=> string(16) "

74 L

" } [1]=> array(3) { ["option_id"]=> string(4) "6180" ["question_id"]=> string(4) "1563" ["opt_desc"]=> string(18) "

11.2 L

" } [2]=> array(3) { ["option_id"]=> string(4) "6181" ["question_id"]=> string(4) "1563" ["opt_desc"]=> string(18) "

22.4 L

" } [3]=> array(3) { ["option_id"]=> string(4) "6182" ["question_id"]=> string(4) "1563" ["opt_desc"]=> string(16) "

84 L

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1600" ["question_id"]=> string(4) "1563" ["option_id"]=> string(4) "6182" } } } [39]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "133" ["ques_text"]=> string(500) "

Vitamin B12 contains                                                                            (2003)

" ["question_id"]=> string(4) "1575" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6227" ["question_id"]=> string(4) "1575" ["opt_desc"]=> string(19) "

Zn (II)

" } [1]=> array(3) { ["option_id"]=> string(4) "6228" ["question_id"]=> string(4) "1575" ["opt_desc"]=> string(19) "

Ca (II)

" } [2]=> array(3) { ["option_id"]=> string(4) "6229" ["question_id"]=> string(4) "1575" ["opt_desc"]=> string(19) "

Fe (II)

" } [3]=> array(3) { ["option_id"]=> string(4) "6230" ["question_id"]=> string(4) "1575" ["opt_desc"]=> string(20) "

Co (III)

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1612" ["question_id"]=> string(4) "1575" ["option_id"]=> string(4) "6230" } } } [40]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "136" ["ques_text"]=> string(281) "

The gene for dibetese mellitus is :                                       (BHU 2012)

" ["question_id"]=> string(4) "1625" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6427" ["question_id"]=> string(4) "1625" ["opt_desc"]=> string(30) "

Autosomal dominant

" } [1]=> array(3) { ["option_id"]=> string(4) "6428" ["question_id"]=> string(4) "1625" ["opt_desc"]=> string(31) "

Autosomal recessive

" } [2]=> array(3) { ["option_id"]=> string(4) "6429" ["question_id"]=> string(4) "1625" ["opt_desc"]=> string(32) "

Sex- linked dominant

" } [3]=> array(3) { ["option_id"]=> string(4) "6430" ["question_id"]=> string(4) "1625" ["opt_desc"]=> string(33) "

Sex- linked recessive

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1662" ["question_id"]=> string(4) "1625" ["option_id"]=> string(4) "6428" } } } [41]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "140" ["ques_text"]=> string(101) "

Sin12ο.sin48ο.sin54ο is equal to

" ["question_id"]=> string(4) "1666" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6591" ["question_id"]=> string(4) "1666" ["opt_desc"]=> string(13) "

1

" } [1]=> array(3) { ["option_id"]=> string(4) "6592" ["question_id"]=> string(4) "1666" ["opt_desc"]=> string(15) "

1/4

" } [2]=> array(3) { ["option_id"]=> string(4) "6593" ["question_id"]=> string(4) "1666" ["opt_desc"]=> string(15) "

1/8

" } [3]=> array(3) { ["option_id"]=> string(4) "6594" ["question_id"]=> string(4) "1666" ["opt_desc"]=> string(25) "

none of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1703" ["question_id"]=> string(4) "1666" ["option_id"]=> string(4) "6593" } } } [42]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "142" ["ques_text"]=> string(85) "

The weight of a molecule of the compound C60H122 is

" ["question_id"]=> string(4) "1694" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6703" ["question_id"]=> string(4) "1694" ["opt_desc"]=> string(37) "

1.09 x 10-21 g

" } [1]=> array(3) { ["option_id"]=> string(4) "6704" ["question_id"]=> string(4) "1694" ["opt_desc"]=> string(36) "

1.4 x 10-21 g

" } [2]=> array(3) { ["option_id"]=> string(4) "6705" ["question_id"]=> string(4) "1694" ["opt_desc"]=> string(37) "

5.025 x 1023 g

" } [3]=> array(3) { ["option_id"]=> string(4) "6706" ["question_id"]=> string(4) "1694" ["opt_desc"]=> string(38) "

16.023 x 1023 g

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1731" ["question_id"]=> string(4) "1694" ["option_id"]=> string(4) "6704" } } } [43]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "140" ["ques_text"]=> string(457) "

cos2π12+cos2π4+cos25π12is

" ["question_id"]=> string(4) "1698" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6715" ["question_id"]=> string(4) "1698" ["opt_desc"]=> string(151) "

23+3

" } [1]=> array(3) { ["option_id"]=> string(4) "6716" ["question_id"]=> string(4) "1698" ["opt_desc"]=> string(15) "

2/3

" } [2]=> array(3) { ["option_id"]=> string(4) "6717" ["question_id"]=> string(4) "1698" ["opt_desc"]=> string(151) "

3+32

" } [3]=> array(3) { ["option_id"]=> string(4) "6718" ["question_id"]=> string(4) "1698" ["opt_desc"]=> string(15) "

3/2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1734" ["question_id"]=> string(4) "1698" ["option_id"]=> string(4) "6718" } } } [44]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "143" ["ques_text"]=> string(228) "

50 ml 10 N H2SO4, 25 ml 12 N HCl and 40 ml 5 N HNO3 were mixed together and the volume of the mixture was made 1000 ml by adding water. The normality of the resultant solution will be

" ["question_id"]=> string(4) "1716" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6787" ["question_id"]=> string(4) "1716" ["opt_desc"]=> string(14) "

2N

" } [1]=> array(3) { ["option_id"]=> string(4) "6788" ["question_id"]=> string(4) "1716" ["opt_desc"]=> string(14) "

1N

" } [2]=> array(3) { ["option_id"]=> string(4) "6789" ["question_id"]=> string(4) "1716" ["opt_desc"]=> string(14) "

3N

" } [3]=> array(3) { ["option_id"]=> string(4) "6790" ["question_id"]=> string(4) "1716" ["opt_desc"]=> string(14) "

4N

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1752" ["question_id"]=> string(4) "1716" ["option_id"]=> string(4) "6788" } } } [45]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "159" ["ques_text"]=> string(6071) "

Name of the compound given below

" ["question_id"]=> string(4) "1948" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "7715" ["question_id"]=> string(4) "1948" ["opt_desc"]=> string(31) "

2, 3-diethylheptane

" } [1]=> array(3) { ["option_id"]=> string(4) "7716" ["question_id"]=> string(4) "1948" ["opt_desc"]=> string(34) "

5-ethyl-6-methyloctane

" } [2]=> array(3) { ["option_id"]=> string(4) "7717" ["question_id"]=> string(4) "1948" ["opt_desc"]=> string(34) "

4-ethyl-3-methyloctane

" } [3]=> array(3) { ["option_id"]=> string(4) "7718" ["question_id"]=> string(4) "1948" ["opt_desc"]=> string(33) "

3-metyl-4-ethyloctane

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1984" ["question_id"]=> string(4) "1948" ["option_id"]=> string(4) "7717" } } } [46]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "159" ["ques_text"]=> string(3844) "

The chirality of the compound

" ["question_id"]=> string(4) "1955" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "7743" ["question_id"]=> string(4) "1955" ["opt_desc"]=> string(13) "

R

" } [1]=> array(3) { ["option_id"]=> string(4) "7744" ["question_id"]=> string(4) "1955" ["opt_desc"]=> string(13) "

S

" } [2]=> array(3) { ["option_id"]=> string(4) "7745" ["question_id"]=> string(4) "1955" ["opt_desc"]=> string(13) "

Z

" } [3]=> array(3) { ["option_id"]=> string(4) "7746" ["question_id"]=> string(4) "1955" ["opt_desc"]=> string(13) "

E

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1991" ["question_id"]=> string(4) "1955" ["option_id"]=> string(4) "7743" } } } [47]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "159" ["ques_text"]=> string(4730) "

The state of hybridization of C2, C3, C5 and C6 of the hydrocarbon,

Is in the following sequence

" ["question_id"]=> string(4) "1971" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "7807" ["question_id"]=> string(4) "1971" ["opt_desc"]=> string(65) "

sp, sp3, sp2 and sp3

" } [1]=> array(3) { ["option_id"]=> string(4) "7808" ["question_id"]=> string(4) "1971" ["opt_desc"]=> string(65) "

sp3, sp2, sp2 and sp

" } [2]=> array(3) { ["option_id"]=> string(4) "7809" ["question_id"]=> string(4) "1971" ["opt_desc"]=> string(65) "

sp, sp2, sp2 and sp3

" } [3]=> array(3) { ["option_id"]=> string(4) "7810" ["question_id"]=> string(4) "1971" ["opt_desc"]=> string(65) "

sp, sp2, sp3 and sp2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2007" ["question_id"]=> string(4) "1971" ["option_id"]=> string(4) "7807" } } } [48]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "164" ["ques_text"]=> string(11599) "

Which of the following is fast debrominated?

" ["question_id"]=> string(4) "2025" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "8023" ["question_id"]=> string(4) "2025" ["opt_desc"]=> string(14) "

IV

" } [1]=> array(3) { ["option_id"]=> string(4) "8024" ["question_id"]=> string(4) "2025" ["opt_desc"]=> string(14) "

II

" } [2]=> array(3) { ["option_id"]=> string(4) "8025" ["question_id"]=> string(4) "2025" ["opt_desc"]=> string(21) "

 III

" } [3]=> array(3) { ["option_id"]=> string(4) "8026" ["question_id"]=> string(4) "2025" ["opt_desc"]=> string(19) "

 I

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2061" ["question_id"]=> string(4) "2025" ["option_id"]=> string(4) "8023" } } } [49]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "164" ["ques_text"]=> string(10980) "

The above transformation proceeds through

" ["question_id"]=> string(4) "2033" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "8055" ["question_id"]=> string(4) "2033" ["opt_desc"]=> string(34) "

Electrophilic-addition

" } [1]=> array(3) { ["option_id"]=> string(4) "8056" ["question_id"]=> string(4) "2033" ["opt_desc"]=> string(32) "

Benzyne intermediate

" } [2]=> array(3) { ["option_id"]=> string(4) "8057" ["question_id"]=> string(4) "2033" ["opt_desc"]=> string(47) "

Activated nucleophilic substitution

" } [3]=> array(3) { ["option_id"]=> string(4) "8058" ["question_id"]=> string(4) "2033" ["opt_desc"]=> string(49) "

 Elimination, addition mechanism

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2069" ["question_id"]=> string(4) "2033" ["option_id"]=> string(4) "8057" } } } [50]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "172" ["ques_text"]=> string(3493) "

Monomer of

" ["question_id"]=> string(4) "2152" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "8531" ["question_id"]=> string(4) "2152" ["opt_desc"]=> string(28) "

2-methyl propene

" } [1]=> array(3) { ["option_id"]=> string(4) "8532" ["question_id"]=> string(4) "2152" ["opt_desc"]=> string(19) "

Styrene

" } [2]=> array(3) { ["option_id"]=> string(4) "8533" ["question_id"]=> string(4) "2152" ["opt_desc"]=> string(21) "

Propylene

" } [3]=> array(3) { ["option_id"]=> string(4) "8534" ["question_id"]=> string(4) "2152" ["opt_desc"]=> string(18) "

Ethene

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2188" ["question_id"]=> string(4) "2152" ["option_id"]=> string(4) "8531" } } } [51]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "173" ["ques_text"]=> string(43) "

Vitamin B12 contains

" ["question_id"]=> string(4) "2179" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "8639" ["question_id"]=> string(4) "2179" ["opt_desc"]=> string(19) "

Zn (II)

" } [1]=> array(3) { ["option_id"]=> string(4) "8640" ["question_id"]=> string(4) "2179" ["opt_desc"]=> string(19) "

Ca (II)

" } [2]=> array(3) { ["option_id"]=> string(4) "8641" ["question_id"]=> string(4) "2179" ["opt_desc"]=> string(19) "

Fe (II)

" } [3]=> array(3) { ["option_id"]=> string(4) "8642" ["question_id"]=> string(4) "2179" ["opt_desc"]=> string(20) "

Co (III)

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2215" ["question_id"]=> string(4) "2179" ["option_id"]=> string(4) "8642" } } } [52]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "183" ["ques_text"]=> string(129) "

If isotopic distribution of C-12 and C-14 is 98% and 2% respectively then the no. of C-14 atoms in 12 gm of carbon is

" ["question_id"]=> string(4) "2254" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "8909" ["question_id"]=> string(4) "2254" ["opt_desc"]=> string(35) "

1.032 x 1022

" } [1]=> array(3) { ["option_id"]=> string(4) "8910" ["question_id"]=> string(4) "2254" ["opt_desc"]=> string(33) "

3.0 x 1022

" } [2]=> array(3) { ["option_id"]=> string(4) "8911" ["question_id"]=> string(4) "2254" ["opt_desc"]=> string(34) "

5.88 x 1023

" } [3]=> array(3) { ["option_id"]=> string(4) "8912" ["question_id"]=> string(4) "2254" ["opt_desc"]=> string(34) "

6.02 x 1023

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2290" ["question_id"]=> string(4) "2254" ["option_id"]=> string(4) "8909" } } } [53]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "183" ["ques_text"]=> string(173) "

A compound made up of two elements A and B is found to contain 25% A (Atomic mass = 12.5) and 75% B (Atomic mass = 37.5). The simplest formula of the compound is

" ["question_id"]=> string(4) "2264" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "8949" ["question_id"]=> string(4) "2264" ["opt_desc"]=> string(14) "

AB

" } [1]=> array(3) { ["option_id"]=> string(4) "8950" ["question_id"]=> string(4) "2264" ["opt_desc"]=> string(26) "

AB2

" } [2]=> array(3) { ["option_id"]=> string(4) "8951" ["question_id"]=> string(4) "2264" ["opt_desc"]=> string(26) "

AB3

" } [3]=> array(3) { ["option_id"]=> string(4) "8952" ["question_id"]=> string(4) "2264" ["opt_desc"]=> string(26) "

A3B

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2300" ["question_id"]=> string(4) "2264" ["option_id"]=> string(4) "8949" } } } [54]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "183" ["ques_text"]=> string(200) "

On analysis a certain compound was found to contain iodine and oxygen in the ratio of 254 gm of iodine (atomic mass 127) and 80 gm oxygen (at mass=16). What is the formula of the compound.

" ["question_id"]=> string(4) "2266" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "8957" ["question_id"]=> string(4) "2266" ["opt_desc"]=> string(14) "

IO

" } [1]=> array(3) { ["option_id"]=> string(4) "8958" ["question_id"]=> string(4) "2266" ["opt_desc"]=> string(26) "

I2O

" } [2]=> array(3) { ["option_id"]=> string(4) "8959" ["question_id"]=> string(4) "2266" ["opt_desc"]=> string(38) "

I5O3

" } [3]=> array(3) { ["option_id"]=> string(4) "8960" ["question_id"]=> string(4) "2266" ["opt_desc"]=> string(38) "

I2O5

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2302" ["question_id"]=> string(4) "2266" ["option_id"]=> string(4) "8960" } } } [55]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "186" ["ques_text"]=> string(13135) "

Current flows due north in a horizontal transmission line. Magnetic field at a point P vertically above it directed

" ["question_id"]=> string(4) "2281" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "9009" ["question_id"]=> string(4) "2281" ["opt_desc"]=> string(23) "

North wards

" } [1]=> array(3) { ["option_id"]=> string(4) "9010" ["question_id"]=> string(4) "2281" ["opt_desc"]=> string(23) "

South wards

" } [2]=> array(3) { ["option_id"]=> string(4) "9011" ["question_id"]=> string(4) "2281" ["opt_desc"]=> string(23) "

Toward east

" } [3]=> array(3) { ["option_id"]=> string(4) "9012" ["question_id"]=> string(4) "2281" ["opt_desc"]=> string(24) "

Towards west

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2317" ["question_id"]=> string(4) "2281" ["option_id"]=> string(4) "9011" } } } [56]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "188" ["ques_text"]=> string(93) "

12 gm of Mg (Atomic mass 24) will react completely with hydrochloric acid to give

" ["question_id"]=> string(4) "2321" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "9169" ["question_id"]=> string(4) "2321" ["opt_desc"]=> string(36) "

One mol of H2

" } [1]=> array(3) { ["option_id"]=> string(4) "9170" ["question_id"]=> string(4) "2321" ["opt_desc"]=> string(41) "

½ mol of H2

" } [2]=> array(3) { ["option_id"]=> string(4) "9171" ["question_id"]=> string(4) "2321" ["opt_desc"]=> string(36) "

2/3 mol of O2

" } [3]=> array(3) { ["option_id"]=> string(4) "9172" ["question_id"]=> string(4) "2321" ["opt_desc"]=> string(80) "

Both ½ mol of H2 and ½ mol of O2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2357" ["question_id"]=> string(4) "2321" ["option_id"]=> string(4) "9170" } } } [57]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "188" ["ques_text"]=> string(153) "

1.12 ml of a gas is produced at S.T.P. by the action of 4.12 mg of alcohol ROH with methyl magnesium Iodide. The molecular mass of alcohol is

" ["question_id"]=> string(4) "2325" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "9185" ["question_id"]=> string(4) "2325" ["opt_desc"]=> string(16) "

16.0

" } [1]=> array(3) { ["option_id"]=> string(4) "9186" ["question_id"]=> string(4) "2325" ["opt_desc"]=> string(16) "

41.2

" } [2]=> array(3) { ["option_id"]=> string(4) "9187" ["question_id"]=> string(4) "2325" ["opt_desc"]=> string(16) "

82.4

" } [3]=> array(3) { ["option_id"]=> string(4) "9188" ["question_id"]=> string(4) "2325" ["opt_desc"]=> string(17) "

156.0

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2361" ["question_id"]=> string(4) "2325" ["option_id"]=> string(4) "9187" } } } [58]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "189" ["ques_text"]=> string(169) "

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic  mass unit, the mass of one mole of the substance will

" ["question_id"]=> string(4) "2354" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "9301" ["question_id"]=> string(4) "2354" ["opt_desc"]=> string(64) "

Be a function of the molecular mass of the substance

" } [1]=> array(3) { ["option_id"]=> string(4) "9302" ["question_id"]=> string(4) "2354" ["opt_desc"]=> string(28) "

Remain unchanged

" } [2]=> array(3) { ["option_id"]=> string(4) "9303" ["question_id"]=> string(4) "2354" ["opt_desc"]=> string(29) "

Increase two fold

" } [3]=> array(3) { ["option_id"]=> string(4) "9304" ["question_id"]=> string(4) "2354" ["opt_desc"]=> string(26) "

Decrease twice

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2390" ["question_id"]=> string(4) "2354" ["option_id"]=> string(4) "9304" } } } [59]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "190" ["ques_text"]=> string(104) "

Volume of a gas at STP is 1.12 x 10-7 cc. Calculate the number of molecules in it

" ["question_id"]=> string(4) "2365" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "9345" ["question_id"]=> string(4) "2365" ["opt_desc"]=> string(34) "

3.01 x 1020

" } [1]=> array(3) { ["option_id"]=> string(4) "9346" ["question_id"]=> string(4) "2365" ["opt_desc"]=> string(34) "

3.01 x 1012

" } [2]=> array(3) { ["option_id"]=> string(4) "9347" ["question_id"]=> string(4) "2365" ["opt_desc"]=> string(34) "

3.01 x 1023

" } [3]=> array(3) { ["option_id"]=> string(4) "9348" ["question_id"]=> string(4) "2365" ["opt_desc"]=> string(34) "

3.01 x 1024

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2401" ["question_id"]=> string(4) "2365" ["option_id"]=> string(4) "9346" } } } [60]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "50" ["ques_text"]=> string(4980) "

A charge + q and a charge –q are placed at x = +a and x = -a, respectively as shown in fig. 12.1. The variation of E is plotted a function of x by assuming positive E as oriented along the positive x-axis. Identify the correct variation of E along the x-axis.

" ["question_id"]=> string(4) "2374" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "9381" ["question_id"]=> string(4) "2374" ["opt_desc"]=> string(6712) "

" } [1]=> array(3) { ["option_id"]=> string(4) "9382" ["question_id"]=> string(4) "2374" ["opt_desc"]=> string(6700) "

" } [2]=> array(3) { ["option_id"]=> string(4) "9383" ["question_id"]=> string(4) "2374" ["opt_desc"]=> string(6676) "

" } [3]=> array(3) { ["option_id"]=> string(4) "9384" ["question_id"]=> string(4) "2374" ["opt_desc"]=> string(6584) "

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2410" ["question_id"]=> string(4) "2374" ["option_id"]=> string(4) "9381" } } } [61]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "38" ["ques_text"]=> string(638) "

Equivalent conductance of NaCl, HCl and C2H5COONa at infinite dilution are 126.45 426.16 and 91 ohm-1 cm2, respectively. The equivalent conductance of C2H5COOH is                                                                                  (1997)

" ["question_id"]=> string(4) "2420" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "9565" ["question_id"]=> string(4) "2420" ["opt_desc"]=> string(50) "

201.28 ohm-1 cm2

" } [1]=> array(3) { ["option_id"]=> string(4) "9566" ["question_id"]=> string(4) "2420" ["opt_desc"]=> string(50) "

390.71 ohm-1 cm2

" } [2]=> array(3) { ["option_id"]=> string(4) "9567" ["question_id"]=> string(4) "2420" ["opt_desc"]=> string(50) "

698.28 ohm-1 cm2

" } [3]=> array(3) { ["option_id"]=> string(4) "9568" ["question_id"]=> string(4) "2420" ["opt_desc"]=> string(50) "

540.48 ohm-1 cm2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2456" ["question_id"]=> string(4) "2420" ["option_id"]=> string(4) "9566" } } } [62]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "31" ["ques_text"]=> string(121) "

An element having bcc structure has 12.08 x 1023 unit cells. The number of atoms in these cells is

" ["question_id"]=> string(4) "2474" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "9781" ["question_id"]=> string(4) "2474" ["opt_desc"]=> string(35) "

12.08 x 1023

" } [1]=> array(3) { ["option_id"]=> string(4) "9782" ["question_id"]=> string(4) "2474" ["opt_desc"]=> string(35) "

24.16 x 1023

" } [2]=> array(3) { ["option_id"]=> string(4) "9783" ["question_id"]=> string(4) "2474" ["opt_desc"]=> string(35) "

48.38 x 1023

" } [3]=> array(3) { ["option_id"]=> string(4) "9784" ["question_id"]=> string(4) "2474" ["opt_desc"]=> string(35) "

12.08 x 1022

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2513" ["question_id"]=> string(4) "2474" ["option_id"]=> string(4) "9782" } } } [63]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "83" ["ques_text"]=> string(1997) "

Select the law that corresponds to the data shown for the following reaction:

A + B → Products

Expt.                   [A]                       [B]                       Initial rate

1                          0.012                  0.035                  0.1

2                          0.024                  0.070                  0.8

3                          0.024                  0.035                  0.1

4                          0.012                  0.070                  0.8

 

" ["question_id"]=> string(4) "2588" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "10237" ["question_id"]=> string(4) "2588" ["opt_desc"]=> string(35) "

Rate = k[B]3

" } [1]=> array(3) { ["option_id"]=> string(5) "10238" ["question_id"]=> string(4) "2588" ["opt_desc"]=> string(35) "

Rate = k[B]4

" } [2]=> array(3) { ["option_id"]=> string(5) "10239" ["question_id"]=> string(4) "2588" ["opt_desc"]=> string(27) "

Rate = k[A] [B]

" } [3]=> array(3) { ["option_id"]=> string(5) "10240" ["question_id"]=> string(4) "2588" ["opt_desc"]=> string(51) "

Rate = k[A]2 [B]2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2627" ["question_id"]=> string(4) "2588" ["option_id"]=> string(5) "10237" } } } [64]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "26" ["ques_text"]=> string(154) "

If A and B are two sets such that A has 12 elements, B has 17 elements and A ∪ B has 21 elements, then number of elements in A ∩ B are

" ["question_id"]=> string(4) "2622" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "10373" ["question_id"]=> string(4) "2622" ["opt_desc"]=> string(13) "

6

" } [1]=> array(3) { ["option_id"]=> string(5) "10374" ["question_id"]=> string(4) "2622" ["opt_desc"]=> string(13) "

4

" } [2]=> array(3) { ["option_id"]=> string(5) "10375" ["question_id"]=> string(4) "2622" ["opt_desc"]=> string(13) "

8

" } [3]=> array(3) { ["option_id"]=> string(5) "10376" ["question_id"]=> string(4) "2622" ["opt_desc"]=> string(25) "

none of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2661" ["question_id"]=> string(4) "2622" ["option_id"]=> string(5) "10375" } } } [65]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "26" ["ques_text"]=> string(236) "

In a class of 25 students, 12 have taken mathematics, 8 have taken mathematics but not biology. If each student has taken either mathematics or biology or both, then the number of students who have taken both the subjects is

" ["question_id"]=> string(4) "2624" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "10381" ["question_id"]=> string(4) "2624" ["opt_desc"]=> string(0) "" } [1]=> array(3) { ["option_id"]=> string(5) "10382" ["question_id"]=> string(4) "2624" ["opt_desc"]=> string(13) "

4

" } [2]=> array(3) { ["option_id"]=> string(5) "10383" ["question_id"]=> string(4) "2624" ["opt_desc"]=> string(13) "

8

" } [3]=> array(3) { ["option_id"]=> string(5) "10384" ["question_id"]=> string(4) "2624" ["opt_desc"]=> string(13) "

0

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2663" ["question_id"]=> string(4) "2624" ["option_id"]=> string(5) "10382" } } } [66]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "193" ["ques_text"]=> string(119) "

The number of ways of selecting two numbers from the set {1, 2… ..12} whose sum is divisible by 3 is

" ["question_id"]=> string(4) "2648" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "10477" ["question_id"]=> string(4) "2648" ["opt_desc"]=> string(14) "

66

" } [1]=> array(3) { ["option_id"]=> string(5) "10478" ["question_id"]=> string(4) "2648" ["opt_desc"]=> string(14) "

16

" } [2]=> array(3) { ["option_id"]=> string(5) "10479" ["question_id"]=> string(4) "2648" ["opt_desc"]=> string(13) "

6

" } [3]=> array(3) { ["option_id"]=> string(5) "10480" ["question_id"]=> string(4) "2648" ["opt_desc"]=> string(14) "

22

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2687" ["question_id"]=> string(4) "2648" ["option_id"]=> string(5) "10480" } } } [67]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "194" ["ques_text"]=> string(100) "

The shortest distance between the lines x + a = 2y – 12z and x = y + 20 = 6(z-a)is

" ["question_id"]=> string(4) "2668" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "10557" ["question_id"]=> string(4) "2668" ["opt_desc"]=> string(15) "

a/2

" } [1]=> array(3) { ["option_id"]=> string(5) "10558" ["question_id"]=> string(4) "2668" ["opt_desc"]=> string(13) "

a

" } [2]=> array(3) { ["option_id"]=> string(5) "10559" ["question_id"]=> string(4) "2668" ["opt_desc"]=> string(14) "

2a

" } [3]=> array(3) { ["option_id"]=> string(5) "10560" ["question_id"]=> string(4) "2668" ["opt_desc"]=> string(14) "

3a

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2707" ["question_id"]=> string(4) "2668" ["option_id"]=> string(5) "10559" } } } [68]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "196" ["ques_text"]=> string(156) "

The gravitational potential in a region is given by V = (3x + 4y + 12z) J/kg. The modulus of the gravitational field at (x = 1, y = 0, z = 3) is

" ["question_id"]=> string(4) "2698" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "10677" ["question_id"]=> string(4) "2698" ["opt_desc"]=> string(32) "

20 N kg-1

" } [1]=> array(3) { ["option_id"]=> string(5) "10678" ["question_id"]=> string(4) "2698" ["opt_desc"]=> string(32) "

13 N kg-1

" } [2]=> array(3) { ["option_id"]=> string(5) "10679" ["question_id"]=> string(4) "2698" ["opt_desc"]=> string(32) "

12 N kg-1

" } [3]=> array(3) { ["option_id"]=> string(5) "10680" ["question_id"]=> string(4) "2698" ["opt_desc"]=> string(31) "

5 N kg-1

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2737" ["question_id"]=> string(4) "2698" ["option_id"]=> string(5) "10678" } } } [69]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "197" ["ques_text"]=> string(2235) "

Find the position of point from wire 'B' where net magnetic field is zero due to following current distribution

" ["question_id"]=> string(4) "2701" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "10689" ["question_id"]=> string(4) "2701" ["opt_desc"]=> string(25) "

4 cm

" } [1]=> array(3) { ["option_id"]=> string(5) "10690" ["question_id"]=> string(4) "2701" ["opt_desc"]=> string(19) "

30/7 cm

" } [2]=> array(3) { ["option_id"]=> string(5) "10691" ["question_id"]=> string(4) "2701" ["opt_desc"]=> string(19) "

12/7 cm

" } [3]=> array(3) { ["option_id"]=> string(5) "10692" ["question_id"]=> string(4) "2701" ["opt_desc"]=> string(16) "

2 cm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2740" ["question_id"]=> string(4) "2701" ["option_id"]=> string(5) "10691" } } } [70]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "197" ["ques_text"]=> string(5333) "

Find out the magnitude of the magnetic field at point P due to following current distribution

" ["question_id"]=> string(4) "2702" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "10693" ["question_id"]=> string(4) "2702" ["opt_desc"]=> string(50) "

μo ia/ πr2

" } [1]=> array(3) { ["option_id"]=> string(5) "10694" ["question_id"]=> string(4) "2702" ["opt_desc"]=> string(50) "

μo ia2/ πr

" } [2]=> array(3) { ["option_id"]=> string(5) "10695" ["question_id"]=> string(4) "2702" ["opt_desc"]=> string(51) "

μo ia/ 2πr2

" } [3]=> array(3) { ["option_id"]=> string(5) "10696" ["question_id"]=> string(4) "2702" ["opt_desc"]=> string(57) "

 2μo ia/ πr2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2741" ["question_id"]=> string(4) "2702" ["option_id"]=> string(5) "10693" } } } [71]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "197" ["ques_text"]=> string(8271) "

An equilateral triangle of side 'a' carries a current i then find out the magnetic field at point P which is vertex of triangle

 

" ["question_id"]=> string(4) "2714" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "10741" ["question_id"]=> string(4) "2714" ["opt_desc"]=> string(229) "

μoi23πa

" } [1]=> array(3) { ["option_id"]=> string(5) "10742" ["question_id"]=> string(4) "2714" ["opt_desc"]=> string(229) "

μoi23πa

" } [2]=> array(3) { ["option_id"]=> string(5) "10743" ["question_id"]=> string(4) "2714" ["opt_desc"]=> string(216) "

23μoiπa

" } [3]=> array(3) { ["option_id"]=> string(5) "10744" ["question_id"]=> string(4) "2714" ["opt_desc"]=> string(16) "

Zero

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2753" ["question_id"]=> string(4) "2714" ["option_id"]=> string(5) "10742" } } } [72]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "198" ["ques_text"]=> string(174) "

The gravitational potential in a region is given by V = (3x + 4y + 12z) J/kg. The modulus of the gravitational field at (x = 1, y = 0, z = 3) is

 

" ["question_id"]=> string(4) "2724" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "10781" ["question_id"]=> string(4) "2724" ["opt_desc"]=> string(32) "

20 N kg-1

" } [1]=> array(3) { ["option_id"]=> string(5) "10782" ["question_id"]=> string(4) "2724" ["opt_desc"]=> string(32) "

13 N kg-1

" } [2]=> array(3) { ["option_id"]=> string(5) "10783" ["question_id"]=> string(4) "2724" ["opt_desc"]=> string(32) "

12 N kg-1

" } [3]=> array(3) { ["option_id"]=> string(5) "10784" ["question_id"]=> string(4) "2724" ["opt_desc"]=> string(31) "

5 N kg-1

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2763" ["question_id"]=> string(4) "2724" ["option_id"]=> string(5) "10782" } } } [73]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "201" ["ques_text"]=> string(72) "

The equation 5x2-12xy+4y2=0 represents

" ["question_id"]=> string(4) "2768" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "10957" ["question_id"]=> string(4) "2768" ["opt_desc"]=> string(30) "

two parallel lines

" } [1]=> array(3) { ["option_id"]=> string(5) "10958" ["question_id"]=> string(4) "2768" ["opt_desc"]=> string(20) "

a circle

" } [2]=> array(3) { ["option_id"]=> string(5) "10959" ["question_id"]=> string(4) "2768" ["opt_desc"]=> string(35) "

two perpendicular lines

" } [3]=> array(3) { ["option_id"]=> string(5) "10960" ["question_id"]=> string(4) "2768" ["opt_desc"]=> string(40) "

two lines through the origin

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2808" ["question_id"]=> string(4) "2768" ["option_id"]=> string(5) "10958" } } } [74]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "202" ["ques_text"]=> string(209) "

A bag contains for tickets marked with numbers 112, 121, 211, 222. One ticket is drawn at random from the bag. Let Ei (i=1, 2, 3) denote the event that the digit on the ticket is 2. Then

" ["question_id"]=> string(4) "2788" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11037" ["question_id"]=> string(4) "2788" ["opt_desc"]=> string(59) "

E1 and E2 are independent

" } [1]=> array(3) { ["option_id"]=> string(5) "11038" ["question_id"]=> string(4) "2788" ["opt_desc"]=> string(59) "

E2 and E3 are independent

" } [2]=> array(3) { ["option_id"]=> string(5) "11039" ["question_id"]=> string(4) "2788" ["opt_desc"]=> string(59) "

E3 and E1 are independent

" } [3]=> array(3) { ["option_id"]=> string(5) "11040" ["question_id"]=> string(4) "2788" ["opt_desc"]=> string(24) "

all of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2828" ["question_id"]=> string(4) "2788" ["option_id"]=> string(5) "11039" } } } [75]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "197" ["ques_text"]=> string(6579) "

Find magnetic field at centre O in each of the following figure

" ["question_id"]=> string(4) "2792" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11053" ["question_id"]=> string(4) "2792" ["opt_desc"]=> string(191) "

μoir

" } [1]=> array(3) { ["option_id"]=> string(5) "11054" ["question_id"]=> string(4) "2792" ["opt_desc"]=> string(207) "

μoi2r

" } [2]=> array(3) { ["option_id"]=> string(5) "11055" ["question_id"]=> string(4) "2792" ["opt_desc"]=> string(214) "

μoi4r

" } [3]=> array(3) { ["option_id"]=> string(5) "11056" ["question_id"]=> string(4) "2792" ["opt_desc"]=> string(198) "

μoi4r

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2832" ["question_id"]=> string(4) "2792" ["option_id"]=> string(5) "11055" } } } [76]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "197" ["ques_text"]=> string(7571) "

Find magnetic field at centre O in each of each of the following figure

" ["question_id"]=> string(4) "2793" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11057" ["question_id"]=> string(4) "2793" ["opt_desc"]=> string(270) "

μoi2r

" } [1]=> array(3) { ["option_id"]=> string(5) "11058" ["question_id"]=> string(4) "2793" ["opt_desc"]=> string(214) "

μoi2r

" } [2]=> array(3) { ["option_id"]=> string(5) "11059" ["question_id"]=> string(4) "2793" ["opt_desc"]=> string(224) "

3μoi8r

" } [3]=> array(3) { ["option_id"]=> string(5) "11060" ["question_id"]=> string(4) "2793" ["opt_desc"]=> string(224) "

3μoi8r

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2833" ["question_id"]=> string(4) "2793" ["option_id"]=> string(5) "11060" } } } [77]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "204" ["ques_text"]=> string(5728) "

For the solenoid shown in figure. The magnetic field at point P is

 

" ["question_id"]=> string(4) "2813" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11137" ["question_id"]=> string(4) "2813" ["opt_desc"]=> string(229) "

μ0ni4(3+1)

" } [1]=> array(3) { ["option_id"]=> string(5) "11138" ["question_id"]=> string(4) "2813" ["opt_desc"]=> string(189) "

3μ0ni4

" } [2]=> array(3) { ["option_id"]=> string(5) "11139" ["question_id"]=> string(4) "2813" ["opt_desc"]=> string(229) "

μ0ni2(3+1)

" } [3]=> array(3) { ["option_id"]=> string(5) "11140" ["question_id"]=> string(4) "2813" ["opt_desc"]=> string(235) "

μ0ni4(31)

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2853" ["question_id"]=> string(4) "2813" ["option_id"]=> string(5) "11137" } } } [78]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "204" ["ques_text"]=> string(14940) "

Figure shows the cress sectional view of the hollow cylindrical conductor with inner radius 'R' and outer radius '2R', cylinder carrying uniformly distributed current along it's axis. The magnetic induction at point 'P' at a distance 3R/2 from the axis of the cylinder will be

 

" ["question_id"]=> string(4) "2815" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11145" ["question_id"]=> string(4) "2815" ["opt_desc"]=> string(16) "

Zero

" } [1]=> array(3) { ["option_id"]=> string(5) "11146" ["question_id"]=> string(4) "2815" ["opt_desc"]=> string(225) "

5μ0i72πR

" } [2]=> array(3) { ["option_id"]=> string(5) "11147" ["question_id"]=> string(4) "2815" ["opt_desc"]=> string(225) "

7μ0i18πR

" } [3]=> array(3) { ["option_id"]=> string(5) "11148" ["question_id"]=> string(4) "2815" ["opt_desc"]=> string(225) "

5μ0i36πR

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2855" ["question_id"]=> string(4) "2815" ["option_id"]=> string(5) "11148" } } } [79]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "204" ["ques_text"]=> string(4522) "

A coil of 50 turns is situated in a magnetic field b = 0.25weber/m2 as shown in figure. A current of 2A is flowing in the coil. Torque acting on the coil will be

" ["question_id"]=> string(4) "2816" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11149" ["question_id"]=> string(4) "2816" ["opt_desc"]=> string(27) "

0.15 N

" } [1]=> array(3) { ["option_id"]=> string(5) "11150" ["question_id"]=> string(4) "2816" ["opt_desc"]=> string(27) "

0.45 N

" } [2]=> array(3) { ["option_id"]=> string(5) "11151" ["question_id"]=> string(4) "2816" ["opt_desc"]=> string(26) "

0.3 N

" } [3]=> array(3) { ["option_id"]=> string(5) "11152" ["question_id"]=> string(4) "2816" ["opt_desc"]=> string(26) "

0.6 N

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2856" ["question_id"]=> string(4) "2816" ["option_id"]=> string(5) "11151" } } } [80]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "204" ["ques_text"]=> string(7815) "

 Find out the magnitude of the magnetic field at point P due to following current distribution

" ["question_id"]=> string(4) "2817" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11153" ["question_id"]=> string(4) "2817" ["opt_desc"]=> string(50) "

μo ia/ πr2

" } [1]=> array(3) { ["option_id"]=> string(5) "11154" ["question_id"]=> string(4) "2817" ["opt_desc"]=> string(50) "

μo ia2/ πr

" } [2]=> array(3) { ["option_id"]=> string(5) "11155" ["question_id"]=> string(4) "2817" ["opt_desc"]=> string(51) "

μo ia/ 2πr2

" } [3]=> array(3) { ["option_id"]=> string(5) "11156" ["question_id"]=> string(4) "2817" ["opt_desc"]=> string(51) "

o ia/ πr2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2857" ["question_id"]=> string(4) "2817" ["option_id"]=> string(5) "11153" } } } [81]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "205" ["ques_text"]=> string(3183) "

The magnetic field is downward perpendicular to the plane of the paper and a few charged particles are projected in it. Which of the following is true

 

" ["question_id"]=> string(4) "2833" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11217" ["question_id"]=> string(4) "2833" ["opt_desc"]=> string(59) "

A represents proton and B and electron

" } [1]=> array(3) { ["option_id"]=> string(5) "11218" ["question_id"]=> string(4) "2833" ["opt_desc"]=> string(119) "

Both A and B represent protons but velocity of A is more than that of B

" } [2]=> array(3) { ["option_id"]=> string(5) "11219" ["question_id"]=> string(4) "2833" ["opt_desc"]=> string(120) "

Both A and B represents protons but velocity of B is more than that of A

" } [3]=> array(3) { ["option_id"]=> string(5) "11220" ["question_id"]=> string(4) "2833" ["opt_desc"]=> string(122) "

Both A and B represent electrons, but velocity of B is more than that of A

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2873" ["question_id"]=> string(4) "2833" ["option_id"]=> string(5) "11219" } } } [82]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "205" ["ques_text"]=> string(3858) "

Wires 1 and 2 carrying currents f1 and f2 respectively are inclined at an angle θ to each other. What is the force on a small element dl of wire 2 at a distance of r from 1 (as shown in figure) due to the magnetic field of wire 1

" ["question_id"]=> string(4) "2835" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11225" ["question_id"]=> string(4) "2835" ["opt_desc"]=> string(310) "

μ02πri1,i2dltanθ

" } [1]=> array(3) { ["option_id"]=> string(5) "11226" ["question_id"]=> string(4) "2835" ["opt_desc"]=> string(310) "

μ02πri1,i2dltanθ

" } [2]=> array(3) { ["option_id"]=> string(5) "11227" ["question_id"]=> string(4) "2835" ["opt_desc"]=> string(310) "

μ02πri1,i2dltanθ

" } [3]=> array(3) { ["option_id"]=> string(5) "11228" ["question_id"]=> string(4) "2835" ["opt_desc"]=> string(310) "

μ02πri1,i2dltanθ

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2875" ["question_id"]=> string(4) "2835" ["option_id"]=> string(5) "11227" } } } [83]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "205" ["ques_text"]=> string(11134) "

A circular loop of radius a, carrying a current i, is placed in a two-dimensional magnetic field. The centre of the loop coincides with the centre of the field. The strength of the magnetic field at the periphery of the loop is B. Find the magnetic force on the wire

 

" ["question_id"]=> string(4) "2836" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11229" ["question_id"]=> string(4) "2836" ["opt_desc"]=> string(19) "

πiaB

" } [1]=> array(3) { ["option_id"]=> string(5) "11230" ["question_id"]=> string(4) "2836" ["opt_desc"]=> string(20) "

4πiaB

" } [2]=> array(3) { ["option_id"]=> string(5) "11231" ["question_id"]=> string(4) "2836" ["opt_desc"]=> string(16) "

Zero

" } [3]=> array(3) { ["option_id"]=> string(5) "11232" ["question_id"]=> string(4) "2836" ["opt_desc"]=> string(20) "

2πiaB

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2876" ["question_id"]=> string(4) "2836" ["option_id"]=> string(5) "11232" } } } [84]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "206" ["ques_text"]=> string(6124) "

A conductor PQRSTU, each side of length L, bent as shown in the figure, carries a current i and is placed in a uniform magnetic induction B directed parallel to the positive Y-axis. The force experience by the wire and its direction are

" ["question_id"]=> string(4) "2840" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11245" ["question_id"]=> string(4) "2840" ["opt_desc"]=> string(60) "

2iBL directed along the negative Z-axis

" } [1]=> array(3) { ["option_id"]=> string(5) "11246" ["question_id"]=> string(4) "2840" ["opt_desc"]=> string(69) "

5iBL directed along the positive Z-axis

" } [2]=> array(3) { ["option_id"]=> string(5) "11247" ["question_id"]=> string(4) "2840" ["opt_desc"]=> string(66) "

 iBL direction along the positive Z-axis

" } [3]=> array(3) { ["option_id"]=> string(5) "11248" ["question_id"]=> string(4) "2840" ["opt_desc"]=> string(60) "

2iBL directed along the positive Z-axis

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2880" ["question_id"]=> string(4) "2840" ["option_id"]=> string(5) "11247" } } } [85]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "206" ["ques_text"]=> string(3156) "

What is the net force on the coil

" ["question_id"]=> string(4) "2846" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11269" ["question_id"]=> string(4) "2846" ["opt_desc"]=> string(53) "

25 x 10-7N moving towards wire

" } [1]=> array(3) { ["option_id"]=> string(5) "11270" ["question_id"]=> string(4) "2846" ["opt_desc"]=> string(61) "

25 x 10-7N  moving away from wire

" } [2]=> array(3) { ["option_id"]=> string(5) "11271" ["question_id"]=> string(4) "2846" ["opt_desc"]=> string(59) "

35 x 10-7N  moving towards wire

" } [3]=> array(3) { ["option_id"]=> string(5) "11272" ["question_id"]=> string(4) "2846" ["opt_desc"]=> string(61) "

35 x 10-7N  moving away from wire

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2886" ["question_id"]=> string(4) "2846" ["option_id"]=> string(5) "11269" } } } [86]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "206" ["ques_text"]=> string(4275) "

 A metallic block carrying current i is subjected to a uniform magnetic induction B as shown in the figure. The moving charges experience a force F given by ……. which results in the lowering of the potential of the face ……. Assume the speed of the carriers to be v

" ["question_id"]=> string(4) "2851" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11289" ["question_id"]=> string(4) "2851" ["opt_desc"]=> string(205) "

eVBk^,ABCD

" } [1]=> array(3) { ["option_id"]=> string(5) "11290" ["question_id"]=> string(4) "2851" ["opt_desc"]=> string(205) "

eVBk^,ABCD

" } [2]=> array(3) { ["option_id"]=> string(5) "11291" ["question_id"]=> string(4) "2851" ["opt_desc"]=> string(221) "

eVBk^,ABCD

" } [3]=> array(3) { ["option_id"]=> string(5) "11292" ["question_id"]=> string(4) "2851" ["opt_desc"]=> string(221) "

eVBk^,EFGH

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2891" ["question_id"]=> string(4) "2851" ["option_id"]=> string(5) "11291" } } } [87]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "208" ["ques_text"]=> string(135) "

A ball is dropped from a spacecraft revolving around the earth at a height of 120 km. What will happen to the ball

" ["question_id"]=> string(4) "2863" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11337" ["question_id"]=> string(4) "2863" ["opt_desc"]=> string(100) "

It will continue to move with velocity v along the original orbit of spacecraft

" } [1]=> array(3) { ["option_id"]=> string(5) "11338" ["question_id"]=> string(4) "2863" ["opt_desc"]=> string(75) "

If will move with the same speed tangentially to the spacecraft

" } [2]=> array(3) { ["option_id"]=> string(5) "11339" ["question_id"]=> string(4) "2863" ["opt_desc"]=> string(52) "

It will fall down to the earth gradually

" } [3]=> array(3) { ["option_id"]=> string(5) "11340" ["question_id"]=> string(4) "2863" ["opt_desc"]=> string(44) "

It will go very far in the space

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2903" ["question_id"]=> string(4) "2863" ["option_id"]=> string(5) "11337" } } } [88]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "209" ["ques_text"]=> string(11268) "

A circular loop of radius a, carrying a current i, is placed in a two-dimensional magnetic field. The centre of the loop coincides with the centre of the field. The strength of the magnetic field at the periphery of the loop is B. Find the magnetic force on the wire

" ["question_id"]=> string(4) "2875" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11385" ["question_id"]=> string(4) "2875" ["opt_desc"]=> string(19) "

πiaB

" } [1]=> array(3) { ["option_id"]=> string(5) "11386" ["question_id"]=> string(4) "2875" ["opt_desc"]=> string(20) "

4πiaB

" } [2]=> array(3) { ["option_id"]=> string(5) "11387" ["question_id"]=> string(4) "2875" ["opt_desc"]=> string(16) "

Zero

" } [3]=> array(3) { ["option_id"]=> string(5) "11388" ["question_id"]=> string(4) "2875" ["opt_desc"]=> string(20) "

2πiaB

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2915" ["question_id"]=> string(4) "2875" ["option_id"]=> string(5) "11388" } } } [89]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "209" ["ques_text"]=> string(5623) "

 Find out the magnitude of the magnetic field at point P due to following current distribution

" ["question_id"]=> string(4) "2876" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11389" ["question_id"]=> string(4) "2876" ["opt_desc"]=> string(50) "

μo ia/ πr2

" } [1]=> array(3) { ["option_id"]=> string(5) "11390" ["question_id"]=> string(4) "2876" ["opt_desc"]=> string(50) "

μo ia2/ πr

" } [2]=> array(3) { ["option_id"]=> string(5) "11391" ["question_id"]=> string(4) "2876" ["opt_desc"]=> string(51) "

μo ia/ 2πr2

" } [3]=> array(3) { ["option_id"]=> string(5) "11392" ["question_id"]=> string(4) "2876" ["opt_desc"]=> string(57) "

 2μo ia/ πr2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2916" ["question_id"]=> string(4) "2876" ["option_id"]=> string(5) "11389" } } } [90]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "209" ["ques_text"]=> string(5504) "

 For the solenoid shown in figure. The magnetic field at point P is

" ["question_id"]=> string(4) "2877" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11393" ["question_id"]=> string(4) "2877" ["opt_desc"]=> string(229) "

μ0ni4(3+1)

" } [1]=> array(3) { ["option_id"]=> string(5) "11394" ["question_id"]=> string(4) "2877" ["opt_desc"]=> string(189) "

3μ0ni4

" } [2]=> array(3) { ["option_id"]=> string(5) "11395" ["question_id"]=> string(4) "2877" ["opt_desc"]=> string(229) "

μ0ni2(3+1)

" } [3]=> array(3) { ["option_id"]=> string(5) "11396" ["question_id"]=> string(4) "2877" ["opt_desc"]=> string(235) "

μ0ni4(31)

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2917" ["question_id"]=> string(4) "2877" ["option_id"]=> string(5) "11393" } } } [91]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "211" ["ques_text"]=> string(15034) "

Figure shows the cress sectional view of the hollow cylindrical conductor with inner radius 'R' and outer radius '2R', cylinder carrying uniformly distributed current along it's axis. The magnetic induction at point 'P' at a distance 3R/2 from the axis of the cylinder will be

" ["question_id"]=> string(4) "2904" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11501" ["question_id"]=> string(4) "2904" ["opt_desc"]=> string(16) "

Zero

" } [1]=> array(3) { ["option_id"]=> string(5) "11502" ["question_id"]=> string(4) "2904" ["opt_desc"]=> string(225) "

5μ0i72πR

" } [2]=> array(3) { ["option_id"]=> string(5) "11503" ["question_id"]=> string(4) "2904" ["opt_desc"]=> string(225) "

7μ0i18πR

" } [3]=> array(3) { ["option_id"]=> string(5) "11504" ["question_id"]=> string(4) "2904" ["opt_desc"]=> string(225) "

5μ0i36πR

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2944" ["question_id"]=> string(4) "2904" ["option_id"]=> string(5) "11504" } } } [92]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "211" ["ques_text"]=> string(3829) "

 Find the position of point from wire 'B' where net magnetic field is zero due to following current distribution

" ["question_id"]=> string(4) "2905" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11505" ["question_id"]=> string(4) "2905" ["opt_desc"]=> string(25) "

4 cm

" } [1]=> array(3) { ["option_id"]=> string(5) "11506" ["question_id"]=> string(4) "2905" ["opt_desc"]=> string(19) "

30/7 cm

" } [2]=> array(3) { ["option_id"]=> string(5) "11507" ["question_id"]=> string(4) "2905" ["opt_desc"]=> string(19) "

12/7 cm

" } [3]=> array(3) { ["option_id"]=> string(5) "11508" ["question_id"]=> string(4) "2905" ["opt_desc"]=> string(22) "

 2 cm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2945" ["question_id"]=> string(4) "2905" ["option_id"]=> string(5) "11507" } } } [93]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "211" ["ques_text"]=> string(1916) "

 An electron moves straight inside a charged parallel plate capacitor at uniform charge density σ. The space between the plates is filled with constant magnetic field of induction  B. Time of straight line motion of the electron in the capacitor is

" ["question_id"]=> string(4) "2907" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11513" ["question_id"]=> string(4) "2907" ["opt_desc"]=> string(192) "

eσε0lB

" } [1]=> array(3) { ["option_id"]=> string(5) "11514" ["question_id"]=> string(4) "2907" ["opt_desc"]=> string(169) "

ε0lBσ

" } [2]=> array(3) { ["option_id"]=> string(5) "11515" ["question_id"]=> string(4) "2907" ["opt_desc"]=> string(182) "

eσε0B

" } [3]=> array(3) { ["option_id"]=> string(5) "11516" ["question_id"]=> string(4) "2907" ["opt_desc"]=> string(182) "

ε0Beσ

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2947" ["question_id"]=> string(4) "2907" ["option_id"]=> string(5) "11514" } } } [94]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "211" ["ques_text"]=> string(3782) "

Wires 1 and 2 carrying currents f1 and f2 respectively are inclined at an angle θ to each other. What is the force on a small element dl of wire 2 at a distance of r from 1 (as shown in figure) due to the magnetic field of wire 1

" ["question_id"]=> string(4) "2908" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11517" ["question_id"]=> string(4) "2908" ["opt_desc"]=> string(310) "

μ02πri1,i2dltanθ

" } [1]=> array(3) { ["option_id"]=> string(5) "11518" ["question_id"]=> string(4) "2908" ["opt_desc"]=> string(354) "

μ02πri1,i2dlsinθ

" } [2]=> array(3) { ["option_id"]=> string(5) "11519" ["question_id"]=> string(4) "2908" ["opt_desc"]=> string(332) "

μ02πri1,i2dlcosθ

" } [3]=> array(3) { ["option_id"]=> string(5) "11520" ["question_id"]=> string(4) "2908" ["opt_desc"]=> string(354) "

μ04πri1,i2dlsinθ

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2948" ["question_id"]=> string(4) "2908" ["option_id"]=> string(5) "11519" } } } [95]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "211" ["ques_text"]=> string(7270) "

A wire abc is carrying current i. It is bent as shown in fig and is placed in a uniform magnetic field of magnetic induction B. Length ab = l and Ð abc = 45o. The ratio of force on ab and on bc is

" ["question_id"]=> string(4) "2910" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11525" ["question_id"]=> string(4) "2910" ["opt_desc"]=> string(118) "

12

" } [1]=> array(3) { ["option_id"]=> string(5) "11526" ["question_id"]=> string(4) "2910" ["opt_desc"]=> string(93) "

2

" } [2]=> array(3) { ["option_id"]=> string(5) "11527" ["question_id"]=> string(4) "2910" ["opt_desc"]=> string(13) "

1

" } [3]=> array(3) { ["option_id"]=> string(5) "11528" ["question_id"]=> string(4) "2910" ["opt_desc"]=> string(15) "

2/3

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2950" ["question_id"]=> string(4) "2910" ["option_id"]=> string(5) "11527" } } } [96]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "211" ["ques_text"]=> string(10257) "

An equilateral triangle of side 'a' carries a current i then find out the magnetic field at point P which is vertex of triangle

" ["question_id"]=> string(4) "2911" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11529" ["question_id"]=> string(4) "2911" ["opt_desc"]=> string(229) "

μoi23πa

" } [1]=> array(3) { ["option_id"]=> string(5) "11530" ["question_id"]=> string(4) "2911" ["opt_desc"]=> string(229) "

μoi23πa

" } [2]=> array(3) { ["option_id"]=> string(5) "11531" ["question_id"]=> string(4) "2911" ["opt_desc"]=> string(216) "

23μoiπa

" } [3]=> array(3) { ["option_id"]=> string(5) "11532" ["question_id"]=> string(4) "2911" ["opt_desc"]=> string(16) "

Zero

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2951" ["question_id"]=> string(4) "2911" ["option_id"]=> string(5) "11530" } } } [97]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "211" ["ques_text"]=> string(1879) "

An infinitely long, straight conductor AB is fixed and a current is passed through it. Another movable straight wire CD of finite length and carrying current is held perpendicular to it and released. Neglect weight of the wire

" ["question_id"]=> string(4) "2915" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11545" ["question_id"]=> string(4) "2915" ["opt_desc"]=> string(68) "

The rod CD will move upwards parallel to itself

" } [1]=> array(3) { ["option_id"]=> string(5) "11546" ["question_id"]=> string(4) "2915" ["opt_desc"]=> string(69) "

The rod CD will move downward parallel to itself

" } [2]=> array(3) { ["option_id"]=> string(5) "11547" ["question_id"]=> string(4) "2915" ["opt_desc"]=> string(84) "

The rod CD will move upward and turn clockwise at the same time

" } [3]=> array(3) { ["option_id"]=> string(5) "11548" ["question_id"]=> string(4) "2915" ["opt_desc"]=> string(96) "

The rod CD will move upward and turn anti –clockwise at the same time

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2955" ["question_id"]=> string(4) "2915" ["option_id"]=> string(5) "11547" } } } [98]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "211" ["ques_text"]=> string(4390) "

A coil of 50 turns is situated in a magnetic field b = 0.25weber/m2 as shown in figure. A current of 2A is flowing in the coil. Torque acting on the coil will be

" ["question_id"]=> string(4) "2916" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11549" ["question_id"]=> string(4) "2916" ["opt_desc"]=> string(27) "

0.15 N

" } [1]=> array(3) { ["option_id"]=> string(5) "11550" ["question_id"]=> string(4) "2916" ["opt_desc"]=> string(26) "

0.3 N

" } [2]=> array(3) { ["option_id"]=> string(5) "11551" ["question_id"]=> string(4) "2916" ["opt_desc"]=> string(27) "

0.45 N

" } [3]=> array(3) { ["option_id"]=> string(5) "11552" ["question_id"]=> string(4) "2916" ["opt_desc"]=> string(26) "

0.6 N

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2956" ["question_id"]=> string(4) "2916" ["option_id"]=> string(5) "11550" } } } [99]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "211" ["ques_text"]=> string(10555) "

Find magnetic field at centre O in each of each of the following figure

" ["question_id"]=> string(4) "2917" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11553" ["question_id"]=> string(4) "2917" ["opt_desc"]=> string(198) "

μoi2r

" } [1]=> array(3) { ["option_id"]=> string(5) "11554" ["question_id"]=> string(4) "2917" ["opt_desc"]=> string(214) "

μoi2r

" } [2]=> array(3) { ["option_id"]=> string(5) "11555" ["question_id"]=> string(4) "2917" ["opt_desc"]=> string(224) "

3μoi8r

" } [3]=> array(3) { ["option_id"]=> string(5) "11556" ["question_id"]=> string(4) "2917" ["opt_desc"]=> string(208) "

3μoi8r

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2957" ["question_id"]=> string(4) "2917" ["option_id"]=> string(5) "11553" } } } [100]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "211" ["ques_text"]=> string(3281) "

A square coil of N turns (with length of each side equal L) carrying current i is placed in a uniform magnetic field B=B0j^ as shown in figure. What is the torque acting on the coil

" ["question_id"]=> string(4) "2918" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11557" ["question_id"]=> string(4) "2918" ["opt_desc"]=> string(199) "

+B0NiL2k^

" } [1]=> array(3) { ["option_id"]=> string(5) "11558" ["question_id"]=> string(4) "2918" ["opt_desc"]=> string(205) "

B0NiL2k^

" } [2]=> array(3) { ["option_id"]=> string(5) "11559" ["question_id"]=> string(4) "2918" ["opt_desc"]=> string(199) "

+B0NiL2j^

" } [3]=> array(3) { ["option_id"]=> string(5) "11560" ["question_id"]=> string(4) "2918" ["opt_desc"]=> string(205) "

B0NiL2j^

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2958" ["question_id"]=> string(4) "2918" ["option_id"]=> string(5) "11558" } } } [101]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "212" ["ques_text"]=> string(3226) "

What is the net force on the coil                                                            [DCE 2000]

" ["question_id"]=> string(4) "2919" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11561" ["question_id"]=> string(4) "2919" ["opt_desc"]=> string(53) "

25 x 10-7N moving towards wire

" } [1]=> array(3) { ["option_id"]=> string(5) "11562" ["question_id"]=> string(4) "2919" ["opt_desc"]=> string(61) "

25 x 10-7N  moving away from wire

" } [2]=> array(3) { ["option_id"]=> string(5) "11563" ["question_id"]=> string(4) "2919" ["opt_desc"]=> string(59) "

35 x 10-7N  moving towards wire

" } [3]=> array(3) { ["option_id"]=> string(5) "11564" ["question_id"]=> string(4) "2919" ["opt_desc"]=> string(61) "

35 x 10-7N  moving away from wire

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2959" ["question_id"]=> string(4) "2919" ["option_id"]=> string(5) "11561" } } } [102]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "212" ["ques_text"]=> string(11595) "

Find magnetic field at centre O in each of the following figure

" ["question_id"]=> string(4) "2920" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11565" ["question_id"]=> string(4) "2920" ["opt_desc"]=> string(200) "

μoir

" } [1]=> array(3) { ["option_id"]=> string(5) "11566" ["question_id"]=> string(4) "2920" ["opt_desc"]=> string(198) "

μoi2r

" } [2]=> array(3) { ["option_id"]=> string(5) "11567" ["question_id"]=> string(4) "2920" ["opt_desc"]=> string(223) "

μoi4r

" } [3]=> array(3) { ["option_id"]=> string(5) "11568" ["question_id"]=> string(4) "2920" ["opt_desc"]=> string(207) "

μoi4r

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2960" ["question_id"]=> string(4) "2920" ["option_id"]=> string(5) "11567" } } } [103]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "212" ["ques_text"]=> string(2727) "

Current i flows through a long conducting wire bent at right angle as shown in figure. The magnetic field at a point P on the right bisector of the angle XOY at a distance r from O is

" ["question_id"]=> string(4) "2921" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11569" ["question_id"]=> string(4) "2921" ["opt_desc"]=> string(182) "

μ0iπr

" } [1]=> array(3) { ["option_id"]=> string(5) "11570" ["question_id"]=> string(4) "2921" ["opt_desc"]=> string(192) "

2μ0iπr

" } [2]=> array(3) { ["option_id"]=> string(5) "11571" ["question_id"]=> string(4) "2921" ["opt_desc"]=> string(257) "

μ0i4πr(2+1)

" } [3]=> array(3) { ["option_id"]=> string(5) "11572" ["question_id"]=> string(4) "2921" ["opt_desc"]=> string(292) "

μ04π.2ir(2+1)

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2961" ["question_id"]=> string(4) "2921" ["option_id"]=> string(5) "11572" } } } [104]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "212" ["ques_text"]=> string(4629) "

A metallic block carrying current i is subjected to a uniform magnetic induction B as shown in the figure. The moving charges experience a force F given by ……. which results in the lowering of the potential of the face ……. Assume the speed of the carriers to be v

" ["question_id"]=> string(4) "2924" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11581" ["question_id"]=> string(4) "2924" ["opt_desc"]=> string(205) "

eVBk^,ABCD

" } [1]=> array(3) { ["option_id"]=> string(5) "11582" ["question_id"]=> string(4) "2924" ["opt_desc"]=> string(205) "

eVBk^,ABCD

" } [2]=> array(3) { ["option_id"]=> string(5) "11583" ["question_id"]=> string(4) "2924" ["opt_desc"]=> string(221) "

eVBk^,ABCD

" } [3]=> array(3) { ["option_id"]=> string(5) "11584" ["question_id"]=> string(4) "2924" ["opt_desc"]=> string(221) "

eVBk^,EFGH

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2964" ["question_id"]=> string(4) "2924" ["option_id"]=> string(5) "11583" } } } [105]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "214" ["ques_text"]=> string(427) "

A bar magnet with it's poles 25 cm apart and of pole strength 24 amp×m rests with it's centre on a frictionless pivot. A force F is applied on the magnet at a distance of 12 cm  from the pivot so that it is held in equilibrium at an angle of 30° with respect to  a magnetic field of induction 0.25 T. The value of force F is

" ["question_id"]=> string(4) "2937" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11633" ["question_id"]=> string(4) "2937" ["opt_desc"]=> string(45) "

5.62 N

 

" } [1]=> array(3) { ["option_id"]=> string(5) "11634" ["question_id"]=> string(4) "2937" ["opt_desc"]=> string(27) "

2.56 N

" } [2]=> array(3) { ["option_id"]=> string(5) "11635" ["question_id"]=> string(4) "2937" ["opt_desc"]=> string(27) "

6.52 N

" } [3]=> array(3) { ["option_id"]=> string(5) "11636" ["question_id"]=> string(4) "2937" ["opt_desc"]=> string(27) "

6.25 N

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2977" ["question_id"]=> string(4) "2937" ["option_id"]=> string(5) "11636" } } } [106]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "214" ["ques_text"]=> string(5511) "

Two identical bar magnets with a length 10 cm and weight 50 gm – weight are arranged freely with their like poles facing in a arranged vertical glass tube. The upper magnet hangs in the air above the lower one so that the distance between the nearest pole of the magnet is 3mm. Pole strength of the poles of each magnet will be

" ["question_id"]=> string(4) "2938" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11637" ["question_id"]=> string(4) "2938" ["opt_desc"]=> string(42) "

6.64 amp x m

" } [1]=> array(3) { ["option_id"]=> string(5) "11638" ["question_id"]=> string(4) "2938" ["opt_desc"]=> string(39) "

2 amp x m

" } [2]=> array(3) { ["option_id"]=> string(5) "11639" ["question_id"]=> string(4) "2938" ["opt_desc"]=> string(43) "

10.25 amp x m

" } [3]=> array(3) { ["option_id"]=> string(5) "11640" ["question_id"]=> string(4) "2938" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2978" ["question_id"]=> string(4) "2938" ["option_id"]=> string(5) "11637" } } } [107]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "214" ["ques_text"]=> string(4944) "

Earth's magnetic field may be supposed to be due to a small bar magnet located at the centre of the earth. If the magnetic field at a point on the magnetic equator is 0.3×10–4 T. Magnet moment of bar magnet is

" ["question_id"]=> string(4) "2940" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11645" ["question_id"]=> string(4) "2940" ["opt_desc"]=> string(58) "

7.8 x 108 amp x m2 

" } [1]=> array(3) { ["option_id"]=> string(5) "11646" ["question_id"]=> string(4) "2940" ["opt_desc"]=> string(53) "

7.8 x 1022 amp x m2

" } [2]=> array(3) { ["option_id"]=> string(5) "11647" ["question_id"]=> string(4) "2940" ["opt_desc"]=> string(53) "

6.4 x 1022 amp x m2

" } [3]=> array(3) { ["option_id"]=> string(5) "11648" ["question_id"]=> string(4) "2940" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2980" ["question_id"]=> string(4) "2940" ["option_id"]=> string(5) "11646" } } } [108]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "214" ["ques_text"]=> string(712) "

Two magnets are held together in a vibration magnetometer and are allowed to oscillate in the earth's magnetic field. With like poles together 12 oscillations per minute are made but for unlike poles together only 4 oscillations per minute are executed. The ratio of their magnetic moments is                                                                [MP PMT 1996]

" ["question_id"]=> string(4) "2941" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11649" ["question_id"]=> string(4) "2941" ["opt_desc"]=> string(17) "

3 : 1

" } [1]=> array(3) { ["option_id"]=> string(5) "11650" ["question_id"]=> string(4) "2941" ["opt_desc"]=> string(17) "

1 : 3

" } [2]=> array(3) { ["option_id"]=> string(5) "11651" ["question_id"]=> string(4) "2941" ["opt_desc"]=> string(17) "

3 : 5

" } [3]=> array(3) { ["option_id"]=> string(5) "11652" ["question_id"]=> string(4) "2941" ["opt_desc"]=> string(17) "

5 : 4

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2981" ["question_id"]=> string(4) "2941" ["option_id"]=> string(5) "11652" } } } [109]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "215" ["ques_text"]=> string(3394) "

 A short bar magnet is placed with its south pole towards geographical north. The neutral points are situated at a distance of 20 cm from the centre of the magnet. If BH=0.3 x 10-4 wb/m2 then the magnetic moment of the magnet is

" ["question_id"]=> string(4) "2955" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11705" ["question_id"]=> string(4) "2955" ["opt_desc"]=> string(68) "

9000 ab- amp x cm2

" } [1]=> array(3) { ["option_id"]=> string(5) "11706" ["question_id"]=> string(4) "2955" ["opt_desc"]=> string(45) "

900 ab-amp x cm2 

" } [2]=> array(3) { ["option_id"]=> string(5) "11707" ["question_id"]=> string(4) "2955" ["opt_desc"]=> string(40) "

1200 ab-amp x cm2

" } [3]=> array(3) { ["option_id"]=> string(5) "11708" ["question_id"]=> string(4) "2955" ["opt_desc"]=> string(39) "

225 ab-amp x cm2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2995" ["question_id"]=> string(4) "2955" ["option_id"]=> string(5) "11707" } } } [110]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "217" ["ques_text"]=> string(215) "

In the binomial expansion of (1 + x)14, if the coefficients of the (r + 1)th, (r + 2)th and (r + 3)th terms are in A.P., then 12Cr equals

" ["question_id"]=> string(4) "2990" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11845" ["question_id"]=> string(4) "2990" ["opt_desc"]=> string(15) "

495

" } [1]=> array(3) { ["option_id"]=> string(5) "11846" ["question_id"]=> string(4) "2990" ["opt_desc"]=> string(15) "

910

" } [2]=> array(3) { ["option_id"]=> string(5) "11847" ["question_id"]=> string(4) "2990" ["opt_desc"]=> string(15) "

455

" } [3]=> array(3) { ["option_id"]=> string(5) "11848" ["question_id"]=> string(4) "2990" ["opt_desc"]=> string(15) "

990

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3030" ["question_id"]=> string(4) "2990" ["option_id"]=> string(5) "11845" } } } [111]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "218" ["ques_text"]=> string(3312) "

Two magnets of equal mass are joined at right angles to each other as shown the magnet 1 has a magnetic moment 3 times that of magnet 2. This arrangement is pivoted so that it is free to rotate in the horizontal plane. In equilibrium what angle will the magnet 1 subtend with the magnetic meridian

" ["question_id"]=> string(4) "3006" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11909" ["question_id"]=> string(4) "3006" ["opt_desc"]=> string(33) "

tan-1(1/2)

" } [1]=> array(3) { ["option_id"]=> string(5) "11910" ["question_id"]=> string(4) "3006" ["opt_desc"]=> string(33) "

tan-1(1/3)

" } [2]=> array(3) { ["option_id"]=> string(5) "11911" ["question_id"]=> string(4) "3006" ["opt_desc"]=> string(31) "

tan-1(1)

" } [3]=> array(3) { ["option_id"]=> string(5) "11912" ["question_id"]=> string(4) "3006" ["opt_desc"]=> string(25) "

0o

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3046" ["question_id"]=> string(4) "3006" ["option_id"]=> string(5) "11910" } } } [112]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "220" ["ques_text"]=> string(5076) "

Earth's magnetic field may be supposed to be due to a small bar magnet located at the centre of the earth. If the magnetic field at a point on the magnetic equator is 0.3×10–4 T. Magnet moment of bar magnet is

" ["question_id"]=> string(4) "3007" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11913" ["question_id"]=> string(4) "3007" ["opt_desc"]=> string(52) "

7.8 x 108 amp x m2

" } [1]=> array(3) { ["option_id"]=> string(5) "11914" ["question_id"]=> string(4) "3007" ["opt_desc"]=> string(53) "

7.8 x 1022 amp x m2

" } [2]=> array(3) { ["option_id"]=> string(5) "11915" ["question_id"]=> string(4) "3007" ["opt_desc"]=> string(53) "

6.4 x 1022 amp x m2

" } [3]=> array(3) { ["option_id"]=> string(5) "11916" ["question_id"]=> string(4) "3007" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3047" ["question_id"]=> string(4) "3007" ["option_id"]=> string(5) "11914" } } } [113]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "220" ["ques_text"]=> string(308) "

Two magnets are held together in a vibration magnetometer and are allowed to oscillate in the earth's magnetic field. With like poles together 12 oscillations per minute are made but for unlike poles together only 4 oscillations per minute are executed. The ratio of their magnetic moments is

" ["question_id"]=> string(4) "3008" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11917" ["question_id"]=> string(4) "3008" ["opt_desc"]=> string(17) "

3 : 1

" } [1]=> array(3) { ["option_id"]=> string(5) "11918" ["question_id"]=> string(4) "3008" ["opt_desc"]=> string(17) "

1 : 3

" } [2]=> array(3) { ["option_id"]=> string(5) "11919" ["question_id"]=> string(4) "3008" ["opt_desc"]=> string(17) "

3 : 5

" } [3]=> array(3) { ["option_id"]=> string(5) "11920" ["question_id"]=> string(4) "3008" ["opt_desc"]=> string(17) "

5 : 4

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3048" ["question_id"]=> string(4) "3008" ["option_id"]=> string(5) "11920" } } } [114]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "219" ["ques_text"]=> string(88) "

The mean of 12 numbers is 24. If 5 is added in every number, the new mean is

" ["question_id"]=> string(4) "3030" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12005" ["question_id"]=> string(4) "3030" ["opt_desc"]=> string(14) "

25

" } [1]=> array(3) { ["option_id"]=> string(5) "12006" ["question_id"]=> string(4) "3030" ["opt_desc"]=> string(14) "

29

" } [2]=> array(3) { ["option_id"]=> string(5) "12007" ["question_id"]=> string(4) "3030" ["opt_desc"]=> string(14) "

84

" } [3]=> array(3) { ["option_id"]=> string(5) "12008" ["question_id"]=> string(4) "3030" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3070" ["question_id"]=> string(4) "3030" ["option_id"]=> string(5) "12006" } } } [115]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "219" ["ques_text"]=> string(171) "

The mean marks of 120 students is 20. It was later discovered that two marks were wrongly taken as 50 and 80 instead of 15 and 18. The correct mean of marks is

" ["question_id"]=> string(4) "3031" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12009" ["question_id"]=> string(4) "3031" ["opt_desc"]=> string(17) "

19.19

" } [1]=> array(3) { ["option_id"]=> string(5) "12010" ["question_id"]=> string(4) "3031" ["opt_desc"]=> string(17) "

19.17

" } [2]=> array(3) { ["option_id"]=> string(5) "12011" ["question_id"]=> string(4) "3031" ["opt_desc"]=> string(17) "

19.21

" } [3]=> array(3) { ["option_id"]=> string(5) "12012" ["question_id"]=> string(4) "3031" ["opt_desc"]=> string(17) "

19.14

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3071" ["question_id"]=> string(4) "3031" ["option_id"]=> string(5) "12010" } } } [116]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "219" ["ques_text"]=> string(166) "

The points scored by basket ball team in a series of matches are as follows:

15, 3, 8, 10, 22, 5, 27, 11, 12, 19, 18, 21, 13, 14. Its median is

" ["question_id"]=> string(4) "3033" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12017" ["question_id"]=> string(4) "3033" ["opt_desc"]=> string(14) "

13

" } [1]=> array(3) { ["option_id"]=> string(5) "12018" ["question_id"]=> string(4) "3033" ["opt_desc"]=> string(16) "

13.4

" } [2]=> array(3) { ["option_id"]=> string(5) "12019" ["question_id"]=> string(4) "3033" ["opt_desc"]=> string(16) "

13.5

" } [3]=> array(3) { ["option_id"]=> string(5) "12020" ["question_id"]=> string(4) "3033" ["opt_desc"]=> string(16) "

14.5

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3073" ["question_id"]=> string(4) "3033" ["option_id"]=> string(5) "12019" } } } [117]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "221" ["ques_text"]=> string(427) "

A bar magnet with it's poles 25 cm apart and of pole strength 24 amp×m rests with it's centre on a frictionless pivot. A force F is applied on the magnet at a distance of 12 cm  from the pivot so that it is held in equilibrium at an angle of 30° with respect to  a magnetic field of induction 0.25 T. The value of force F is

" ["question_id"]=> string(4) "3042" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12053" ["question_id"]=> string(4) "3042" ["opt_desc"]=> string(27) "

5.62 N

" } [1]=> array(3) { ["option_id"]=> string(5) "12054" ["question_id"]=> string(4) "3042" ["opt_desc"]=> string(27) "

2.56 N

" } [2]=> array(3) { ["option_id"]=> string(5) "12055" ["question_id"]=> string(4) "3042" ["opt_desc"]=> string(27) "

6.52 N

" } [3]=> array(3) { ["option_id"]=> string(5) "12056" ["question_id"]=> string(4) "3042" ["opt_desc"]=> string(27) "

6.25 N

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3082" ["question_id"]=> string(4) "3042" ["option_id"]=> string(5) "12056" } } } [118]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "221" ["ques_text"]=> string(6111) "

Two identical bar magnets with a length 10 cm and weight 50 gm – weight are arranged freely with their like poles facing in a arranged vertical glass tube. The upper magnet hangs in the air above the lower one so that the distance between the nearest pole of the magnet is 3mm. Pole strength of the poles of each magnet will be

" ["question_id"]=> string(4) "3044" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12061" ["question_id"]=> string(4) "3044" ["opt_desc"]=> string(42) "

6.64 amp x m

" } [1]=> array(3) { ["option_id"]=> string(5) "12062" ["question_id"]=> string(4) "3044" ["opt_desc"]=> string(39) "

2 amp x m

" } [2]=> array(3) { ["option_id"]=> string(5) "12063" ["question_id"]=> string(4) "3044" ["opt_desc"]=> string(43) "

10.25 amp x m

" } [3]=> array(3) { ["option_id"]=> string(5) "12064" ["question_id"]=> string(4) "3044" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3084" ["question_id"]=> string(4) "3044" ["option_id"]=> string(5) "12061" } } } [119]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "221" ["ques_text"]=> string(2896) "

A short bar magnet is placed with its south pole towards geographical north. The neutral points are situated at a distance of 20 cm from the centre of the magnet. If BH=0.3 x 10-4 wb/m2 then the magnetic moment of the magnet is

" ["question_id"]=> string(4) "3045" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12065" ["question_id"]=> string(4) "3045" ["opt_desc"]=> string(68) "

9000 ab- amp x cm2

" } [1]=> array(3) { ["option_id"]=> string(5) "12066" ["question_id"]=> string(4) "3045" ["opt_desc"]=> string(39) "

900 ab-amp x cm2

" } [2]=> array(3) { ["option_id"]=> string(5) "12067" ["question_id"]=> string(4) "3045" ["opt_desc"]=> string(40) "

1200 ab-amp x cm2

" } [3]=> array(3) { ["option_id"]=> string(5) "12068" ["question_id"]=> string(4) "3045" ["opt_desc"]=> string(39) "

225 ab-amp x cm2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3085" ["question_id"]=> string(4) "3045" ["option_id"]=> string(5) "12067" } } } [120]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "224" ["ques_text"]=> string(183) "

A gas has pressure P and volume V. It is now compressed adiabatically to 1/32 times the original volume. If (32)1.4=128, the final pressure is

" ["question_id"]=> string(4) "3092" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12253" ["question_id"]=> string(4) "3092" ["opt_desc"]=> string(25) "

32 P

" } [1]=> array(3) { ["option_id"]=> string(5) "12254" ["question_id"]=> string(4) "3092" ["opt_desc"]=> string(26) "

128 P

" } [2]=> array(3) { ["option_id"]=> string(5) "12255" ["question_id"]=> string(4) "3092" ["opt_desc"]=> string(17) "

P/128

" } [3]=> array(3) { ["option_id"]=> string(5) "12256" ["question_id"]=> string(4) "3092" ["opt_desc"]=> string(16) "

P/32

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3132" ["question_id"]=> string(4) "3092" ["option_id"]=> string(5) "12254" } } } [121]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "225" ["ques_text"]=> string(2898) "

In pressure-volume diagram given below, the isochoric, isothermal, and isobaric parts respectively, are

" ["question_id"]=> string(4) "3098" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12277" ["question_id"]=> string(4) "3098" ["opt_desc"]=> string(49) "

BA, AD, DC

" } [1]=> array(3) { ["option_id"]=> string(5) "12278" ["question_id"]=> string(4) "3098" ["opt_desc"]=> string(55) "

 DC, CB, BA

" } [2]=> array(3) { ["option_id"]=> string(5) "12279" ["question_id"]=> string(4) "3098" ["opt_desc"]=> string(49) "

AB, BC, CD

" } [3]=> array(3) { ["option_id"]=> string(5) "12280" ["question_id"]=> string(4) "3098" ["opt_desc"]=> string(49) "

CD, DA, AB

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3138" ["question_id"]=> string(4) "3098" ["option_id"]=> string(5) "12280" } } } [122]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "226" ["ques_text"]=> string(3143) "

 A thermodynamic process is shown in the figure. The pressures and volumes corresponding to some points in the figure are: PA=3 x 104Pa, PB=8 x104 Pa and VA= 2 x 10-3m3, VD=5 x 10-3m3

In process AB, 600 J of heat is added to the system and in process BC, 200 J of heat is added to the system. The change in internal energy of the system in process AC would be                             [CBSE PMT 1992]

" ["question_id"]=> string(4) "3112" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12333" ["question_id"]=> string(4) "3112" ["opt_desc"]=> string(26) "

560 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12334" ["question_id"]=> string(4) "3112" ["opt_desc"]=> string(26) "

800 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12335" ["question_id"]=> string(4) "3112" ["opt_desc"]=> string(26) "

600 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12336" ["question_id"]=> string(4) "3112" ["opt_desc"]=> string(26) "

640 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3152" ["question_id"]=> string(4) "3112" ["option_id"]=> string(5) "12333" } } } [123]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "226" ["ques_text"]=> string(2443) "

The P-V diagram of a system undergoing thermodynamic transformation is shown in figure. The work done on the system in going from A ® B ® C is 50 J and 20 cal heat is given to the system. The change in internal energy between A and C is

" ["question_id"]=> string(4) "3119" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12361" ["question_id"]=> string(4) "3119" ["opt_desc"]=> string(25) "

34 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12362" ["question_id"]=> string(4) "3119" ["opt_desc"]=> string(25) "

70 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12363" ["question_id"]=> string(4) "3119" ["opt_desc"]=> string(25) "

84 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12364" ["question_id"]=> string(4) "3119" ["opt_desc"]=> string(26) "

134 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3159" ["question_id"]=> string(4) "3119" ["option_id"]=> string(5) "12364" } } } [124]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "226" ["ques_text"]=> string(2826) "

In the following indicator diagram, the net amount of work done will be

" ["question_id"]=> string(4) "3120" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12365" ["question_id"]=> string(4) "3120" ["opt_desc"]=> string(20) "

Positive

" } [1]=> array(3) { ["option_id"]=> string(5) "12366" ["question_id"]=> string(4) "3120" ["opt_desc"]=> string(20) "

Negative

" } [2]=> array(3) { ["option_id"]=> string(5) "12367" ["question_id"]=> string(4) "3120" ["opt_desc"]=> string(16) "

Zero

" } [3]=> array(3) { ["option_id"]=> string(5) "12368" ["question_id"]=> string(4) "3120" ["opt_desc"]=> string(20) "

Infinity

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3160" ["question_id"]=> string(4) "3120" ["option_id"]=> string(5) "12366" } } } [125]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "226" ["ques_text"]=> string(2114) "

A cyclic process ABCA is shown in the V-T diagram. Process on the P-V diagram is

" ["question_id"]=> string(4) "3124" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12381" ["question_id"]=> string(4) "3124" ["opt_desc"]=> string(1863) "

" } [1]=> array(3) { ["option_id"]=> string(5) "12382" ["question_id"]=> string(4) "3124" ["opt_desc"]=> string(2167) "

" } [2]=> array(3) { ["option_id"]=> string(5) "12383" ["question_id"]=> string(4) "3124" ["opt_desc"]=> string(2467) "

" } [3]=> array(3) { ["option_id"]=> string(5) "12384" ["question_id"]=> string(4) "3124" ["opt_desc"]=> string(2279) "

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3164" ["question_id"]=> string(4) "3124" ["option_id"]=> string(5) "12383" } } } [126]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "226" ["ques_text"]=> string(2539) "

A cyclic process for 1 mole of an ideal gas is shown in figure in the V-T, diagram. The work done in AB, BC and CA respectively

" ["question_id"]=> string(4) "3125" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12385" ["question_id"]=> string(4) "3125" ["opt_desc"]=> string(93) "

0, RT2 In(V1/V2), R(T1-T2)

" } [1]=> array(3) { ["option_id"]=> string(5) "12386" ["question_id"]=> string(4) "3125" ["opt_desc"]=> string(93) "

R(T1-T2), 0, RT2 In(V1/V2)

" } [2]=> array(3) { ["option_id"]=> string(5) "12387" ["question_id"]=> string(4) "3125" ["opt_desc"]=> string(93) "

0, RT2 In(V2/V1), R(T1-T2)

" } [3]=> array(3) { ["option_id"]=> string(5) "12388" ["question_id"]=> string(4) "3125" ["opt_desc"]=> string(93) "

0, RT2 In(V2/V1), R(T1-T2)

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3165" ["question_id"]=> string(4) "3125" ["option_id"]=> string(5) "12387" } } } [127]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "226" ["ques_text"]=> string(4353) "

Four curves A, B, C and D are drawn in the adjoining figure for a given amount of gas. The curves which represent adiabatic and isothermal changes are

" ["question_id"]=> string(4) "3128" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12397" ["question_id"]=> string(4) "3128" ["opt_desc"]=> string(50) "

C and D respectively

" } [1]=> array(3) { ["option_id"]=> string(5) "12398" ["question_id"]=> string(4) "3128" ["opt_desc"]=> string(50) "

D and C respectively

" } [2]=> array(3) { ["option_id"]=> string(5) "12399" ["question_id"]=> string(4) "3128" ["opt_desc"]=> string(50) "

A and B respectively

" } [3]=> array(3) { ["option_id"]=> string(5) "12400" ["question_id"]=> string(4) "3128" ["opt_desc"]=> string(50) "

B and A respectively

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3168" ["question_id"]=> string(4) "3128" ["option_id"]=> string(5) "12399" } } } [128]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "228" ["ques_text"]=> string(2459) "

A thermodynamic system is taken through the cycle PQRSP process. The net work done by the system is

" ["question_id"]=> string(4) "3130" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12405" ["question_id"]=> string(4) "3130" ["opt_desc"]=> string(25) "

20 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12406" ["question_id"]=> string(4) "3130" ["opt_desc"]=> string(33) "

– 20 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12407" ["question_id"]=> string(4) "3130" ["opt_desc"]=> string(26) "

400 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12408" ["question_id"]=> string(4) "3130" ["opt_desc"]=> string(34) "

– 374 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3170" ["question_id"]=> string(4) "3130" ["option_id"]=> string(5) "12406" } } } [129]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "228" ["ques_text"]=> string(3639) "

The P-V diagram shows seven curved paths (connected by vertical paths) that can be followed by a gas. Which two of them should be parts of a closed cycle if the net work done by the gas is to be at its maximum value

" ["question_id"]=> string(4) "3131" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12409" ["question_id"]=> string(4) "3131" ["opt_desc"]=> string(23) "

ac

" } [1]=> array(3) { ["option_id"]=> string(5) "12410" ["question_id"]=> string(4) "3131" ["opt_desc"]=> string(23) "

cg

" } [2]=> array(3) { ["option_id"]=> string(5) "12411" ["question_id"]=> string(4) "3131" ["opt_desc"]=> string(23) "

af

" } [3]=> array(3) { ["option_id"]=> string(5) "12412" ["question_id"]=> string(4) "3131" ["opt_desc"]=> string(23) "

cd

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3171" ["question_id"]=> string(4) "3131" ["option_id"]=> string(5) "12411" } } } [130]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "229" ["ques_text"]=> string(2495) "

A cyclic process for 1 mole of an ideal gas is shown in figure in the V-T, diagram. The work done in AB, BC and CA respectively

" ["question_id"]=> string(4) "3140" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12445" ["question_id"]=> string(4) "3140" ["opt_desc"]=> string(93) "

0, RT2 In(V1/V2), R(T1-T2)

" } [1]=> array(3) { ["option_id"]=> string(5) "12446" ["question_id"]=> string(4) "3140" ["opt_desc"]=> string(93) "

R(T1-T2), 0, RT2 In(V1/V2)

" } [2]=> array(3) { ["option_id"]=> string(5) "12447" ["question_id"]=> string(4) "3140" ["opt_desc"]=> string(93) "

0, RT2 In(V2/V1), R(T1-T2)

" } [3]=> array(3) { ["option_id"]=> string(5) "12448" ["question_id"]=> string(4) "3140" ["opt_desc"]=> string(93) "

0, RT2 In(V2/V1), R(T1-T2)

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3180" ["question_id"]=> string(4) "3140" ["option_id"]=> string(5) "12447" } } } [131]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "229" ["ques_text"]=> string(3438) "

An ideal gas of mass m in a state A goes to another state B via three different processes as shown in figure. If Q1, Q2, and Q3 denote the heat absorbed by the gas along the three paths, then

" ["question_id"]=> string(4) "3150" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12485" ["question_id"]=> string(4) "3150" ["opt_desc"]=> string(59) "

Q1<Q2<Q3

" } [1]=> array(3) { ["option_id"]=> string(5) "12486" ["question_id"]=> string(4) "3150" ["opt_desc"]=> string(56) "

Q1<Q2=Q3

" } [2]=> array(3) { ["option_id"]=> string(5) "12487" ["question_id"]=> string(4) "3150" ["opt_desc"]=> string(56) "

Q1=Q2<Q3

" } [3]=> array(3) { ["option_id"]=> string(5) "12488" ["question_id"]=> string(4) "3150" ["opt_desc"]=> string(59) "

Q1>Q2>Q3

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3190" ["question_id"]=> string(4) "3150" ["option_id"]=> string(5) "12485" } } } [132]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "230" ["ques_text"]=> string(4381) "

Four curves A, B, C and D are drawn in the adjoining figure for a given amount of gas. The curves which represent adiabatic and isothermal changes are

" ["question_id"]=> string(4) "3158" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12517" ["question_id"]=> string(4) "3158" ["opt_desc"]=> string(50) "

C and D respectively

" } [1]=> array(3) { ["option_id"]=> string(5) "12518" ["question_id"]=> string(4) "3158" ["opt_desc"]=> string(50) "

D and C respectively

" } [2]=> array(3) { ["option_id"]=> string(5) "12519" ["question_id"]=> string(4) "3158" ["opt_desc"]=> string(50) "

A and B respectively

" } [3]=> array(3) { ["option_id"]=> string(5) "12520" ["question_id"]=> string(4) "3158" ["opt_desc"]=> string(50) "

B and A respectively

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3198" ["question_id"]=> string(4) "3158" ["option_id"]=> string(5) "12519" } } } [133]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "230" ["ques_text"]=> string(183) "

A gas has pressure P and volume V. It is now compressed adiabatically to 1/32 times the original volume. If (32)1.4=128, the final pressure is

" ["question_id"]=> string(4) "3159" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12521" ["question_id"]=> string(4) "3159" ["opt_desc"]=> string(25) "

32 P

" } [1]=> array(3) { ["option_id"]=> string(5) "12522" ["question_id"]=> string(4) "3159" ["opt_desc"]=> string(26) "

128 P

" } [2]=> array(3) { ["option_id"]=> string(5) "12523" ["question_id"]=> string(4) "3159" ["opt_desc"]=> string(17) "

P/128

" } [3]=> array(3) { ["option_id"]=> string(5) "12524" ["question_id"]=> string(4) "3159" ["opt_desc"]=> string(16) "

P/32

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3199" ["question_id"]=> string(4) "3159" ["option_id"]=> string(5) "12522" } } } [134]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "230" ["ques_text"]=> string(2778) "

In the following indicator diagram, the net amount of work done will be

" ["question_id"]=> string(4) "3163" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12537" ["question_id"]=> string(4) "3163" ["opt_desc"]=> string(20) "

Positive

" } [1]=> array(3) { ["option_id"]=> string(5) "12538" ["question_id"]=> string(4) "3163" ["opt_desc"]=> string(20) "

Negative

" } [2]=> array(3) { ["option_id"]=> string(5) "12539" ["question_id"]=> string(4) "3163" ["opt_desc"]=> string(16) "

Zero

" } [3]=> array(3) { ["option_id"]=> string(5) "12540" ["question_id"]=> string(4) "3163" ["opt_desc"]=> string(20) "

Infinity

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3203" ["question_id"]=> string(4) "3163" ["option_id"]=> string(5) "12538" } } } [135]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "231" ["ques_text"]=> string(2529) "

An ideal gas is taken around ABCA as shown in the above P-V diagram. The work done during a cycle is

" ["question_id"]=> string(4) "3183" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12617" ["question_id"]=> string(4) "3183" ["opt_desc"]=> string(24) "

2PV

" } [1]=> array(3) { ["option_id"]=> string(5) "12618" ["question_id"]=> string(4) "3183" ["opt_desc"]=> string(23) "

PV

" } [2]=> array(3) { ["option_id"]=> string(5) "12619" ["question_id"]=> string(4) "3183" ["opt_desc"]=> string(26) "

1/2PV

" } [3]=> array(3) { ["option_id"]=> string(5) "12620" ["question_id"]=> string(4) "3183" ["opt_desc"]=> string(16) "

Zero

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3223" ["question_id"]=> string(4) "3183" ["option_id"]=> string(5) "12617" } } } [136]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "232" ["ques_text"]=> string(3194) "

Carnot cycle (reversible) of a gas represented by a Pressure-Volume curve is shown in the diagram

Consider the following statements

I.          Area ABCD = Work done on the gas

II.        Area ABCD = Net heat absorbed

III.       Change in the internal energy in cycle = 0

Which of these are correct

 

" ["question_id"]=> string(4) "3187" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12633" ["question_id"]=> string(4) "3187" ["opt_desc"]=> string(18) "

I only

" } [1]=> array(3) { ["option_id"]=> string(5) "12634" ["question_id"]=> string(4) "3187" ["opt_desc"]=> string(19) "

II only

" } [2]=> array(3) { ["option_id"]=> string(5) "12635" ["question_id"]=> string(4) "3187" ["opt_desc"]=> string(22) "

II and III

" } [3]=> array(3) { ["option_id"]=> string(5) "12636" ["question_id"]=> string(4) "3187" ["opt_desc"]=> string(25) "

I, II and III

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3227" ["question_id"]=> string(4) "3187" ["option_id"]=> string(5) "12635" } } } [137]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "227" ["ques_text"]=> string(493) "

A plane wave is represented by x = 1.2 sin (314 t + 12.56 y) where x and y are distances measured along in x and y direction in meter and t is time in seconds. This wave has                                     [MP PET 1991]

" ["question_id"]=> string(4) "3202" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12693" ["question_id"]=> string(4) "3202" ["opt_desc"]=> string(93) "

A wave length of 0.25 m and travels m + ve x-direction

" } [1]=> array(3) { ["option_id"]=> string(5) "12694" ["question_id"]=> string(4) "3202" ["opt_desc"]=> string(93) "

A wavelength of 0.25 m and travels in + ve y-direction

" } [2]=> array(3) { ["option_id"]=> string(5) "12695" ["question_id"]=> string(4) "3202" ["opt_desc"]=> string(98) "

A wavelength of 0.5 m and travels in – ve y-direction

" } [3]=> array(3) { ["option_id"]=> string(5) "12696" ["question_id"]=> string(4) "3202" ["opt_desc"]=> string(98) "

A wavelength of 0.5 m and travels in – ve x-direction

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3242" ["question_id"]=> string(4) "3202" ["option_id"]=> string(5) "12695" } } } [138]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "234" ["ques_text"]=> string(239) "

A plane wave is represented by x = 1.2 sin (314 t + 12.56 y) where x and y are distances measured along in x and y direction in meter and t is time in seconds. This wave has

" ["question_id"]=> string(4) "3229" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12801" ["question_id"]=> string(4) "3229" ["opt_desc"]=> string(93) "

A wave length of 0.25 m and travels m + ve x-direction

" } [1]=> array(3) { ["option_id"]=> string(5) "12802" ["question_id"]=> string(4) "3229" ["opt_desc"]=> string(93) "

A wavelength of 0.25 m and travels in + ve y-direction

" } [2]=> array(3) { ["option_id"]=> string(5) "12803" ["question_id"]=> string(4) "3229" ["opt_desc"]=> string(98) "

A wavelength of 0.5 m and travels in – ve y-direction

" } [3]=> array(3) { ["option_id"]=> string(5) "12804" ["question_id"]=> string(4) "3229" ["opt_desc"]=> string(98) "

A wavelength of 0.5 m and travels in – ve x-direction

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3269" ["question_id"]=> string(4) "3229" ["option_id"]=> string(5) "12803" } } } [139]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "234" ["ques_text"]=> string(278) "

A motor car blowing a horn of frequency 124 vibration/sec moves with a velocity 72 km/hr towards a tall wall. The frequency of the reflected sound heard by the driver will be (velocity of sound in air is 330 m/s)

" ["question_id"]=> string(4) "3234" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12821" ["question_id"]=> string(4) "3234" ["opt_desc"]=> string(47) "

109 vibration/sec

" } [1]=> array(3) { ["option_id"]=> string(5) "12822" ["question_id"]=> string(4) "3234" ["opt_desc"]=> string(47) "

132 vibration/sec

" } [2]=> array(3) { ["option_id"]=> string(5) "12823" ["question_id"]=> string(4) "3234" ["opt_desc"]=> string(47) "

140 vibration/sec

" } [3]=> array(3) { ["option_id"]=> string(5) "12824" ["question_id"]=> string(4) "3234" ["opt_desc"]=> string(47) "

248 vibration/sec

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3274" ["question_id"]=> string(4) "3234" ["option_id"]=> string(5) "12823" } } } [140]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "237" ["ques_text"]=> string(340) "

The molecules of a given mass of a gas have a rms velocity of 200 m/sec at 27°C and 1.0 x 105 N/m2 pressure. When the temperature is 127°C and pressure is 0.5 x 105 N/m2, the rms velocity in m/sec will be

" ["question_id"]=> string(4) "3275" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12985" ["question_id"]=> string(4) "3275" ["opt_desc"]=> string(125) "

1002/3

" } [1]=> array(3) { ["option_id"]=> string(5) "12986" ["question_id"]=> string(4) "3275" ["opt_desc"]=> string(105) "

1002

" } [2]=> array(3) { ["option_id"]=> string(5) "12987" ["question_id"]=> string(4) "3275" ["opt_desc"]=> string(115) "

400/2

" } [3]=> array(3) { ["option_id"]=> string(5) "12988" ["question_id"]=> string(4) "3275" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3315" ["question_id"]=> string(4) "3275" ["option_id"]=> string(5) "12987" } } } [141]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "239" ["ques_text"]=> string(3152) "

The adjoining figure shows graph of pressure and volume of a gas at two temperatures T1 and T2. Which of the following interferences is correct

" ["question_id"]=> string(4) "3299" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13081" ["question_id"]=> string(4) "3299" ["opt_desc"]=> string(42) "

T1>T2

" } [1]=> array(3) { ["option_id"]=> string(5) "13082" ["question_id"]=> string(4) "3299" ["opt_desc"]=> string(39) "

T1=T2

" } [2]=> array(3) { ["option_id"]=> string(5) "13083" ["question_id"]=> string(4) "3299" ["opt_desc"]=> string(42) "

T1<T2

" } [3]=> array(3) { ["option_id"]=> string(5) "13084" ["question_id"]=> string(4) "3299" ["opt_desc"]=> string(40) "

No interference can be drawn

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3339" ["question_id"]=> string(4) "3299" ["option_id"]=> string(5) "13083" } } } [142]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "240" ["ques_text"]=> string(285) "

The temperature of 5 mole of a gas which was held at constant volume was changed from 100oC to 120oC. The change in internal energy was found to be 80 J. The total heat capacity of the gas at constant volume will be equal to

" ["question_id"]=> string(4) "3314" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13141" ["question_id"]=> string(4) "3314" ["opt_desc"]=> string(30) "

8 J K-1

" } [1]=> array(3) { ["option_id"]=> string(5) "13142" ["question_id"]=> string(4) "3314" ["opt_desc"]=> string(32) "

0.8 J K-1

" } [2]=> array(3) { ["option_id"]=> string(5) "13143" ["question_id"]=> string(4) "3314" ["opt_desc"]=> string(30) "

4 J K-1

" } [3]=> array(3) { ["option_id"]=> string(5) "13144" ["question_id"]=> string(4) "3314" ["opt_desc"]=> string(32) "

0.4 J K-1

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3354" ["question_id"]=> string(4) "3314" ["option_id"]=> string(5) "13143" } } } [143]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "241" ["ques_text"]=> string(4186) "

An experiment is carried on a fixed amount of gas at different temperatures and at high pressure such that it deviates from the ideal gas behaviour. The variation of PV/RT with P is shown in the diagram. The correct variation will correspond to                                                                           [CPMT 1988]

" ["question_id"]=> string(4) "3327" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13193" ["question_id"]=> string(4) "3327" ["opt_desc"]=> string(28) "

Curve A

" } [1]=> array(3) { ["option_id"]=> string(5) "13194" ["question_id"]=> string(4) "3327" ["opt_desc"]=> string(28) "

Curve B

" } [2]=> array(3) { ["option_id"]=> string(5) "13195" ["question_id"]=> string(4) "3327" ["opt_desc"]=> string(28) "

Curve C

" } [3]=> array(3) { ["option_id"]=> string(5) "13196" ["question_id"]=> string(4) "3327" ["opt_desc"]=> string(28) "

Curve D

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3367" ["question_id"]=> string(4) "3327" ["option_id"]=> string(5) "13194" } } } [144]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "241" ["ques_text"]=> string(6407) "

At the top of a mountain a thermometer reads 7°C and a barometer reads 70 cm of Hg. At the bottom of the mountain these read 27°C and 76 cm of Hg respectively. Comparison of density of air at the top with that of bottom is

" ["question_id"]=> string(4) "3329" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13201" ["question_id"]=> string(4) "3329" ["opt_desc"]=> string(17) "

75/76

" } [1]=> array(3) { ["option_id"]=> string(5) "13202" ["question_id"]=> string(4) "3329" ["opt_desc"]=> string(17) "

70/76

" } [2]=> array(3) { ["option_id"]=> string(5) "13203" ["question_id"]=> string(4) "3329" ["opt_desc"]=> string(17) "

76/75

" } [3]=> array(3) { ["option_id"]=> string(5) "13204" ["question_id"]=> string(4) "3329" ["opt_desc"]=> string(17) "

76/70

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3369" ["question_id"]=> string(4) "3329" ["option_id"]=> string(5) "13201" } } } [145]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "241" ["ques_text"]=> string(7791) "

Two identical glass bulbs are interconnected by a thin glass tube. A gas is filled in these bulbs at N.T.P. If one bulb is placed in ice and another bulb is placed in hot bath, then the pressure of the gas becomes 1.5 times. The temperature of hot bath will be

" ["question_id"]=> string(4) "3331" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13209" ["question_id"]=> string(4) "3331" ["opt_desc"]=> string(30) "

100°C

" } [1]=> array(3) { ["option_id"]=> string(5) "13210" ["question_id"]=> string(4) "3331" ["opt_desc"]=> string(30) "

182°C

" } [2]=> array(3) { ["option_id"]=> string(5) "13211" ["question_id"]=> string(4) "3331" ["opt_desc"]=> string(30) "

256°C

" } [3]=> array(3) { ["option_id"]=> string(5) "13212" ["question_id"]=> string(4) "3331" ["opt_desc"]=> string(30) "

546°C

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3371" ["question_id"]=> string(4) "3331" ["option_id"]=> string(5) "13212" } } } [146]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "242" ["ques_text"]=> string(4941) "

An ideal monoatomic gas is confined in a cylinder by a spring-loaded piston if cross-section 8 x 10-3m2. Initially the gas is at 300K and occupies a volume of 2.4 x 10-3m3 and the spring is in a relaxed state. The gas is heated by a small heater coil H. The force constant of the spring is 8000 N/m, and the atmospheric pressure is 1.0 x 105Pa. The cylinder and piston are thermally insulated. The piston and the spring are massless and there is no friction between the piston and cylinder. There is no heat loss through heater coil wire leads and thermal capacity of the heater coil is negligible. With all the above assumptions, if the gas is heated by the heater until the piston moves out slowly by 0.1m, then the final temperature is

" ["question_id"]=> string(4) "3337" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13233" ["question_id"]=> string(4) "3337" ["opt_desc"]=> string(26) "

400 K

" } [1]=> array(3) { ["option_id"]=> string(5) "13234" ["question_id"]=> string(4) "3337" ["opt_desc"]=> string(26) "

800 K

" } [2]=> array(3) { ["option_id"]=> string(5) "13235" ["question_id"]=> string(4) "3337" ["opt_desc"]=> string(27) "

1200 K

" } [3]=> array(3) { ["option_id"]=> string(5) "13236" ["question_id"]=> string(4) "3337" ["opt_desc"]=> string(26) "

300 K

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3378" ["question_id"]=> string(4) "3337" ["option_id"]=> string(5) "13234" } } } [147]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "243" ["ques_text"]=> string(340) "

The molecules of a given mass of a gas have a rms velocity of 200 m/sec at 27°C and 1.0 x 105 N/m2 pressure. When the temperature is 127°C and pressure is 0.5 x 105 N/m2, the rms velocity in m/sec will be

" ["question_id"]=> string(4) "3354" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13301" ["question_id"]=> string(4) "3354" ["opt_desc"]=> string(125) "

1002/3

" } [1]=> array(3) { ["option_id"]=> string(5) "13302" ["question_id"]=> string(4) "3354" ["opt_desc"]=> string(105) "

1002

" } [2]=> array(3) { ["option_id"]=> string(5) "13303" ["question_id"]=> string(4) "3354" ["opt_desc"]=> string(115) "

400/2

" } [3]=> array(3) { ["option_id"]=> string(5) "13304" ["question_id"]=> string(4) "3354" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3396" ["question_id"]=> string(4) "3354" ["option_id"]=> string(5) "13303" } } } [148]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "247" ["ques_text"]=> string(4822) "

The expansion of an ideal gas of mass m at a constant pressure P is given by the straight line D. Then the expansion of the same ideal gas of mass 2m at a pressure P/ 2 is given by the straight line

" ["question_id"]=> string(4) "3406" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13509" ["question_id"]=> string(4) "3406" ["opt_desc"]=> string(13) "

E

" } [1]=> array(3) { ["option_id"]=> string(5) "13510" ["question_id"]=> string(4) "3406" ["opt_desc"]=> string(13) "

C

" } [2]=> array(3) { ["option_id"]=> string(5) "13511" ["question_id"]=> string(4) "3406" ["opt_desc"]=> string(13) "

B

" } [3]=> array(3) { ["option_id"]=> string(5) "13512" ["question_id"]=> string(4) "3406" ["opt_desc"]=> string(13) "

A

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3450" ["question_id"]=> string(4) "3406" ["option_id"]=> string(5) "13512" } } } [149]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "248" ["ques_text"]=> string(5477) "

An ideal monoatomic gas is confined in a cylinder by a spring-loaded piston if cross-section 8 x 10-3m2. Initially the gas is at 300K and occupies a volume of 2.4 x 10-3m3 and the spring is in a relaxed state. The gas is heated by a small heater coil H. The force constant of the spring is 8000 N/m, and the atmospheric pressure is 1.0 x 105Pa. The cylinder and piston are thermally insulated. The piston and the spring are massless and there is no friction between the piston and cylinder. There is no heat loss through heater coil wire leads and thermal capacity of the heater coil is negligible. With all the above assumptions, if the gas is heated by the heater until the piston moves out slowly by 0.1m, then the final temperature is

" ["question_id"]=> string(4) "3420" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13565" ["question_id"]=> string(4) "3420" ["opt_desc"]=> string(26) "

400 K

" } [1]=> array(3) { ["option_id"]=> string(5) "13566" ["question_id"]=> string(4) "3420" ["opt_desc"]=> string(26) "

800 K

" } [2]=> array(3) { ["option_id"]=> string(5) "13567" ["question_id"]=> string(4) "3420" ["opt_desc"]=> string(27) "

1200 K

" } [3]=> array(3) { ["option_id"]=> string(5) "13568" ["question_id"]=> string(4) "3420" ["opt_desc"]=> string(26) "

300 K

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3464" ["question_id"]=> string(4) "3420" ["option_id"]=> string(5) "13566" } } } [150]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "248" ["ques_text"]=> string(7931) "

Two identical glass bulbs are interconnected by a thin glass tube. A gas is filled in these bulbs at N.T.P. If one bulb is placed in ice and another bulb is placed in hot bath, then the pressure of the gas becomes 1.5 times. The temperature of hot bath will be

" ["question_id"]=> string(4) "3422" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13573" ["question_id"]=> string(4) "3422" ["opt_desc"]=> string(30) "

100°C

" } [1]=> array(3) { ["option_id"]=> string(5) "13574" ["question_id"]=> string(4) "3422" ["opt_desc"]=> string(30) "

182°C

" } [2]=> array(3) { ["option_id"]=> string(5) "13575" ["question_id"]=> string(4) "3422" ["opt_desc"]=> string(30) "

256°C

" } [3]=> array(3) { ["option_id"]=> string(5) "13576" ["question_id"]=> string(4) "3422" ["opt_desc"]=> string(30) "

546°C

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3466" ["question_id"]=> string(4) "3422" ["option_id"]=> string(5) "13576" } } } [151]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "249" ["ques_text"]=> string(285) "

The temperature of 5 mole of a gas which was held at constant volume was changed from 100oC to 120oC. The change in internal energy was found to be 80 J. The total heat capacity of the gas at constant volume will be equal to

" ["question_id"]=> string(4) "3424" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13581" ["question_id"]=> string(4) "3424" ["opt_desc"]=> string(30) "

8 J K-1

" } [1]=> array(3) { ["option_id"]=> string(5) "13582" ["question_id"]=> string(4) "3424" ["opt_desc"]=> string(32) "

0.8 J K-1

" } [2]=> array(3) { ["option_id"]=> string(5) "13583" ["question_id"]=> string(4) "3424" ["opt_desc"]=> string(30) "

4 J K-1

" } [3]=> array(3) { ["option_id"]=> string(5) "13584" ["question_id"]=> string(4) "3424" ["opt_desc"]=> string(32) "

0.4 J K-1

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3468" ["question_id"]=> string(4) "3424" ["option_id"]=> string(5) "13583" } } } [152]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "249" ["ques_text"]=> string(6155) "

At the top of a mountain a thermometer reads 7°C and a barometer reads 70 cm of Hg. At the bottom of the mountain these read 27°C and 76 cm of Hg respectively. Comparison of density of air at the top with that of bottom is

" ["question_id"]=> string(4) "3428" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13597" ["question_id"]=> string(4) "3428" ["opt_desc"]=> string(17) "

75/76

" } [1]=> array(3) { ["option_id"]=> string(5) "13598" ["question_id"]=> string(4) "3428" ["opt_desc"]=> string(17) "

70/76

" } [2]=> array(3) { ["option_id"]=> string(5) "13599" ["question_id"]=> string(4) "3428" ["opt_desc"]=> string(17) "

76/75

" } [3]=> array(3) { ["option_id"]=> string(5) "13600" ["question_id"]=> string(4) "3428" ["opt_desc"]=> string(17) "

76/70

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3472" ["question_id"]=> string(4) "3428" ["option_id"]=> string(5) "13597" } } } [153]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "253" ["ques_text"]=> string(3003) "

A 10 kg mass moves along x-axis. Its acceleration as a function of its position is shown in the figure. What is the total work done on the mass by the force as the mass moves from x=0 to x=8 cm     

[AMU (Med.) 2000]

" ["question_id"]=> string(4) "3512" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13933" ["question_id"]=> string(4) "3512" ["opt_desc"]=> string(33) "

8 x 10-2 J

" } [1]=> array(3) { ["option_id"]=> string(5) "13934" ["question_id"]=> string(4) "3512" ["opt_desc"]=> string(34) "

16 x 10-2 J

" } [2]=> array(3) { ["option_id"]=> string(5) "13935" ["question_id"]=> string(4) "3512" ["opt_desc"]=> string(33) "

4 x 10-2 J

" } [3]=> array(3) { ["option_id"]=> string(5) "13936" ["question_id"]=> string(4) "3512" ["opt_desc"]=> string(35) "

1.6 x 10-3 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3557" ["question_id"]=> string(4) "3512" ["option_id"]=> string(5) "13933" } } } [154]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "253" ["ques_text"]=> string(4111) "

A liquid of density d is pumped by a pump P from situation (i) to situation (ii) as shown in the diagram. If the cross-section of each of the vessels is a, then the work done in pumping (neglecting friction effects) is

" ["question_id"]=> string(4) "3514" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13941" ["question_id"]=> string(4) "3514" ["opt_desc"]=> string(25) "

2dgh

" } [1]=> array(3) { ["option_id"]=> string(5) "13942" ["question_id"]=> string(4) "3514" ["opt_desc"]=> string(25) "

dgha

" } [2]=> array(3) { ["option_id"]=> string(5) "13943" ["question_id"]=> string(4) "3514" ["opt_desc"]=> string(47) "

2dgh2a

" } [3]=> array(3) { ["option_id"]=> string(5) "13944" ["question_id"]=> string(4) "3514" ["opt_desc"]=> string(46) "

dgh2a

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3559" ["question_id"]=> string(4) "3514" ["option_id"]=> string(5) "13944" } } } [155]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "253" ["ques_text"]=> string(4903) "

If W1, W2 and W3 represent the work done in moving a particle from A to B along three different paths 1, 2 and 3 respectively (as shown) in the gravitational field of a point mass m, find the correct relation

" ["question_id"]=> string(4) "3515" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13945" ["question_id"]=> string(4) "3515" ["opt_desc"]=> string(59) "

W1>W2>W3

" } [1]=> array(3) { ["option_id"]=> string(5) "13946" ["question_id"]=> string(4) "3515" ["opt_desc"]=> string(53) "

W1=W2=W3

" } [2]=> array(3) { ["option_id"]=> string(5) "13947" ["question_id"]=> string(4) "3515" ["opt_desc"]=> string(59) "

W1<W2<W3

" } [3]=> array(3) { ["option_id"]=> string(5) "13948" ["question_id"]=> string(4) "3515" ["opt_desc"]=> string(59) "

W2>W1>W3

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3560" ["question_id"]=> string(4) "3515" ["option_id"]=> string(5) "13946" } } } [156]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "255" ["ques_text"]=> string(8674) "

Two carts on horizontal straight rails are pushed apart by an explosion of a powder charge Q placed between the carts. Suppose the coefficients of friction between the carts and rails are identical. If the 200 kg cart travels a distance of 36 metres and stops, the distance covered by the cart weighing 300 kg is                                                   [CPMT 1989]

" ["question_id"]=> string(4) "3536" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14029" ["question_id"]=> string(4) "3536" ["opt_desc"]=> string(30) "

32 metres

" } [1]=> array(3) { ["option_id"]=> string(5) "14030" ["question_id"]=> string(4) "3536" ["opt_desc"]=> string(30) "

24 metres

" } [2]=> array(3) { ["option_id"]=> string(5) "14031" ["question_id"]=> string(4) "3536" ["opt_desc"]=> string(30) "

16 metres

" } [3]=> array(3) { ["option_id"]=> string(5) "14032" ["question_id"]=> string(4) "3536" ["opt_desc"]=> string(30) "

12 metres

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3582" ["question_id"]=> string(4) "3536" ["option_id"]=> string(5) "14031" } } } [157]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "255" ["ques_text"]=> string(3317) "

The graph between the resistive force F acting on a body and the distance covered by the body is shown in the figure. The mass of the body is 25 kg and initial velocity is 2 m/s. When the distance covered by the body is 5m, its kinetic energy would be

" ["question_id"]=> string(4) "3539" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14041" ["question_id"]=> string(4) "3539" ["opt_desc"]=> string(25) "

50 J

" } [1]=> array(3) { ["option_id"]=> string(5) "14042" ["question_id"]=> string(4) "3539" ["opt_desc"]=> string(25) "

40 J

" } [2]=> array(3) { ["option_id"]=> string(5) "14043" ["question_id"]=> string(4) "3539" ["opt_desc"]=> string(25) "

20 J

" } [3]=> array(3) { ["option_id"]=> string(5) "14044" ["question_id"]=> string(4) "3539" ["opt_desc"]=> string(25) "

10 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3587" ["question_id"]=> string(4) "3539" ["option_id"]=> string(5) "14044" } } } [158]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "255" ["ques_text"]=> string(5375) "

Two cars of same mass are moving with same speed v on two different roads inclined at an angle θ with each other, as shown in the figure. At the junction of these roads the two cars collide inelastically and move simultaneously with the same speed. The speed of these cars would be

" ["question_id"]=> string(4) "3540" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14045" ["question_id"]=> string(4) "3540" ["opt_desc"]=> string(27) "

v cos θ/2

" } [1]=> array(3) { ["option_id"]=> string(5) "14046" ["question_id"]=> string(4) "3540" ["opt_desc"]=> string(26) "

v/2 cosθ

" } [2]=> array(3) { ["option_id"]=> string(5) "14047" ["question_id"]=> string(4) "3540" ["opt_desc"]=> string(29) "

v/2 cos θ/2

" } [3]=> array(3) { ["option_id"]=> string(5) "14048" ["question_id"]=> string(4) "3540" ["opt_desc"]=> string(25) "

2v cosθ

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3588" ["question_id"]=> string(4) "3540" ["option_id"]=> string(5) "14045" } } } [159]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "255" ["ques_text"]=> string(2622) "

The relationship between force and position is shown in the figure given (in one dimensional case). The work done by the force in displacing a body from x=1 cm to x= 5 cm is                           [CPMT 1976]

" ["question_id"]=> string(4) "3545" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14065" ["question_id"]=> string(4) "3545" ["opt_desc"]=> string(28) "

20 ergs

" } [1]=> array(3) { ["option_id"]=> string(5) "14066" ["question_id"]=> string(4) "3545" ["opt_desc"]=> string(28) "

60 ergs

" } [2]=> array(3) { ["option_id"]=> string(5) "14067" ["question_id"]=> string(4) "3545" ["opt_desc"]=> string(28) "

70 ergs

" } [3]=> array(3) { ["option_id"]=> string(5) "14068" ["question_id"]=> string(4) "3545" ["opt_desc"]=> string(29) "

700 ergs

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3593" ["question_id"]=> string(4) "3545" ["option_id"]=> string(5) "14065" } } } [160]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "255" ["ques_text"]=> string(9038) "

Three particles A, B and C of equal mass are moving with the same velocity v along the medians of an equilateral triangle. These particle collide at the centre G of triangle. After collision A becomes stationary, B retraces its path with velocity v then the magnitude and direction of velocity of C will be

" ["question_id"]=> string(4) "3546" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14069" ["question_id"]=> string(4) "3546" ["opt_desc"]=> string(49) "

v and opposite to B

" } [1]=> array(3) { ["option_id"]=> string(5) "14070" ["question_id"]=> string(4) "3546" ["opt_desc"]=> string(57) "

v and in the direction of A

" } [2]=> array(3) { ["option_id"]=> string(5) "14071" ["question_id"]=> string(4) "3546" ["opt_desc"]=> string(57) "

v and in the direction of C

" } [3]=> array(3) { ["option_id"]=> string(5) "14072" ["question_id"]=> string(4) "3546" ["opt_desc"]=> string(57) "

v and in the direction of B

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3594" ["question_id"]=> string(4) "3546" ["option_id"]=> string(5) "14072" } } } [161]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "255" ["ques_text"]=> string(177) "

A neutron with 0.6MeV kinetic energy directly collides with a stationary carbon nucleus (mass number 12). The kinetic energy of carbon nucleus after the collision is

" ["question_id"]=> string(4) "3550" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14085" ["question_id"]=> string(4) "3550" ["opt_desc"]=> string(28) "

1.7 MeV

" } [1]=> array(3) { ["option_id"]=> string(5) "14086" ["question_id"]=> string(4) "3550" ["opt_desc"]=> string(29) "

0.17 MeV

" } [2]=> array(3) { ["option_id"]=> string(5) "14087" ["question_id"]=> string(4) "3550" ["opt_desc"]=> string(27) "

17 MeV

" } [3]=> array(3) { ["option_id"]=> string(5) "14088" ["question_id"]=> string(4) "3550" ["opt_desc"]=> string(16) "

Zero

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3598" ["question_id"]=> string(4) "3550" ["option_id"]=> string(5) "14086" } } } [162]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "256" ["ques_text"]=> string(8771) "

A sphere of mass 0.1 kg is attached to a cord of 1m length. Starting from the height of its point of suspension this sphere hits a block of same mass at rest on a frictionless table, If the impact is elastic, then the kinetic energy of the block after the collision is                                        [RPET 1991]

" ["question_id"]=> string(4) "3554" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14101" ["question_id"]=> string(4) "3554" ["opt_desc"]=> string(24) "

1 J

" } [1]=> array(3) { ["option_id"]=> string(5) "14102" ["question_id"]=> string(4) "3554" ["opt_desc"]=> string(25) "

10 J

" } [2]=> array(3) { ["option_id"]=> string(5) "14103" ["question_id"]=> string(4) "3554" ["opt_desc"]=> string(26) "

0.1 J

" } [3]=> array(3) { ["option_id"]=> string(5) "14104" ["question_id"]=> string(4) "3554" ["opt_desc"]=> string(26) "

0.5 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3602" ["question_id"]=> string(4) "3554" ["option_id"]=> string(5) "14101" } } } [163]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "256" ["ques_text"]=> string(7614) "

A block of mass 2kg is released from A on the track that is one quadrant of a circle of radius 1m. It slides down the track and reaches B with a speed of 4ms-1 and finally stops at C at a distance of 3m from B. The work done against the force of friction is

" ["question_id"]=> string(4) "3557" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14113" ["question_id"]=> string(4) "3557" ["opt_desc"]=> string(25) "

10 J

" } [1]=> array(3) { ["option_id"]=> string(5) "14114" ["question_id"]=> string(4) "3557" ["opt_desc"]=> string(25) "

20 J

" } [2]=> array(3) { ["option_id"]=> string(5) "14115" ["question_id"]=> string(4) "3557" ["opt_desc"]=> string(24) "

2 J

" } [3]=> array(3) { ["option_id"]=> string(5) "14116" ["question_id"]=> string(4) "3557" ["opt_desc"]=> string(24) "

6 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3605" ["question_id"]=> string(4) "3557" ["option_id"]=> string(5) "14114" } } } [164]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "257" ["ques_text"]=> string(3723) "

A bullet of mass m moving with a velocity v strikes a suspended wooden block of mass M as shown in the figure and sticks to it. If the block rises to a height h the initial velocity of the bullet is                        

[MP PMT 1997]

" ["question_id"]=> string(4) "3566" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14149" ["question_id"]=> string(4) "3566" ["opt_desc"]=> string(183) "

(m+M/m)2gh

" } [1]=> array(3) { ["option_id"]=> string(5) "14150" ["question_id"]=> string(4) "3566" ["opt_desc"]=> string(113) "

2gh

" } [2]=> array(3) { ["option_id"]=> string(5) "14151" ["question_id"]=> string(4) "3566" ["opt_desc"]=> string(183) "

(M+m/M)2gh

" } [3]=> array(3) { ["option_id"]=> string(5) "14152" ["question_id"]=> string(4) "3566" ["opt_desc"]=> string(173) "

m/M+m)2gh

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3614" ["question_id"]=> string(4) "3566" ["option_id"]=> string(5) "14149" } } } [165]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "257" ["ques_text"]=> string(3057) "

A mass of 10 gm, moving horizontally with a velocity of 100 cm/sec, strikes the bob of a pendulum and strikes to it. The mass of the bob is also 10 gm (see fig.) The maximum height to which the system can be raised is (g=10 m/sec2)

" ["question_id"]=> string(4) "3568" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14157" ["question_id"]=> string(4) "3568" ["opt_desc"]=> string(16) "

Zero

" } [1]=> array(3) { ["option_id"]=> string(5) "14158" ["question_id"]=> string(4) "3568" ["opt_desc"]=> string(16) "

5 cm

" } [2]=> array(3) { ["option_id"]=> string(5) "14159" ["question_id"]=> string(4) "3568" ["opt_desc"]=> string(18) "

2.5 cm

" } [3]=> array(3) { ["option_id"]=> string(5) "14160" ["question_id"]=> string(4) "3568" ["opt_desc"]=> string(19) "

1.25 cm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3616" ["question_id"]=> string(4) "3568" ["option_id"]=> string(5) "14160" } } } [166]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "258" ["ques_text"]=> string(246) "

A car of mass 1250 kg experience a resistance of 750 N when it moves at 30ms–1. If the engine can develop 30kW at this speed, the maximum acceleration that the engine can produce is

" ["question_id"]=> string(4) "3575" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14185" ["question_id"]=> string(4) "3575" ["opt_desc"]=> string(30) "

0.8ms-2

" } [1]=> array(3) { ["option_id"]=> string(5) "14186" ["question_id"]=> string(4) "3575" ["opt_desc"]=> string(30) "

0.2ms-2

" } [2]=> array(3) { ["option_id"]=> string(5) "14187" ["question_id"]=> string(4) "3575" ["opt_desc"]=> string(30) "

0.4ms-1

" } [3]=> array(3) { ["option_id"]=> string(5) "14188" ["question_id"]=> string(4) "3575" ["opt_desc"]=> string(30) "

0.5ms-2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3623" ["question_id"]=> string(4) "3575" ["option_id"]=> string(5) "14186" } } } [167]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "262" ["ques_text"]=> string(10330) "

Six identical balls are lined in a straight groove made on a horizontal frictionless surface as shown. Two similar balls each moving with a velocity v collide with the row of 6 balls from left. What will happen

" ["question_id"]=> string(4) "3621" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14369" ["question_id"]=> string(4) "3621" ["opt_desc"]=> string(114) "

One ball from the right rolls out with a speed 2v and the remaining balls will remain at rest

" } [1]=> array(3) { ["option_id"]=> string(5) "14370" ["question_id"]=> string(4) "3621" ["opt_desc"]=> string(119) "

Two balls from the right roll out with speed v each and the remaining balls will remain stationary

" } [2]=> array(3) { ["option_id"]=> string(5) "14371" ["question_id"]=> string(4) "3621" ["opt_desc"]=> string(129) "

All the six balls in the row will roll out with speed v/6 each and the two colliding balls will come to rest

" } [3]=> array(3) { ["option_id"]=> string(5) "14372" ["question_id"]=> string(4) "3621" ["opt_desc"]=> string(82) "

The colliding balls will come to rest and no ball rolls out from right

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3669" ["question_id"]=> string(4) "3621" ["option_id"]=> string(5) "14370" } } } [168]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "266" ["ques_text"]=> string(246) "

A car of mass 1250 kg experience a resistance of 750 N when it moves at 30ms–1. If the engine can develop 30kW at this speed, the maximum acceleration that the engine can produce is

" ["question_id"]=> string(4) "3685" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14622" ["question_id"]=> string(4) "3685" ["opt_desc"]=> string(30) "

0.8ms-2

" } [1]=> array(3) { ["option_id"]=> string(5) "14623" ["question_id"]=> string(4) "3685" ["opt_desc"]=> string(30) "

0.2ms-2

" } [2]=> array(3) { ["option_id"]=> string(5) "14624" ["question_id"]=> string(4) "3685" ["opt_desc"]=> string(30) "

0.4ms-1

" } [3]=> array(3) { ["option_id"]=> string(5) "14625" ["question_id"]=> string(4) "3685" ["opt_desc"]=> string(30) "

0.5ms-2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3733" ["question_id"]=> string(4) "3685" ["option_id"]=> string(5) "14623" } } } [169]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "269" ["ques_text"]=> string(7590) "

A block of mass 2kg is released from A on the track that is one quadrant of a circle of radius 1m. It slides down the track and reaches B with a speed of 4ms-1 and finally stops at C at a distance of 3m from B. The work done against the force of friction is

" ["question_id"]=> string(4) "3703" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14694" ["question_id"]=> string(4) "3703" ["opt_desc"]=> string(25) "

10 J

" } [1]=> array(3) { ["option_id"]=> string(5) "14695" ["question_id"]=> string(4) "3703" ["opt_desc"]=> string(25) "

20 J

" } [2]=> array(3) { ["option_id"]=> string(5) "14696" ["question_id"]=> string(4) "3703" ["opt_desc"]=> string(24) "

2 J

" } [3]=> array(3) { ["option_id"]=> string(5) "14697" ["question_id"]=> string(4) "3703" ["opt_desc"]=> string(24) "

6 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3751" ["question_id"]=> string(4) "3703" ["option_id"]=> string(5) "14695" } } } [170]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "269" ["ques_text"]=> string(3428) "

A block of mass M slides along the sides of a bowl as shown in the figure. The walls of the bowl are frictionless and the base has coefficient of friction 0.2. If the block is released from the top of the side, which is 1.5 m high, where will the block come to rest ? Given that the length of the base is 15 m

" ["question_id"]=> string(4) "3708" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14714" ["question_id"]=> string(4) "3708" ["opt_desc"]=> string(40) "

1 m from P

" } [1]=> array(3) { ["option_id"]=> string(5) "14715" ["question_id"]=> string(4) "3708" ["opt_desc"]=> string(21) "

Mid point

" } [2]=> array(3) { ["option_id"]=> string(5) "14716" ["question_id"]=> string(4) "3708" ["opt_desc"]=> string(40) "

2 m from P

" } [3]=> array(3) { ["option_id"]=> string(5) "14717" ["question_id"]=> string(4) "3708" ["opt_desc"]=> string(25) "

At Q

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3756" ["question_id"]=> string(4) "3708" ["option_id"]=> string(5) "14714" } } } [171]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "269" ["ques_text"]=> string(8525) "

A sphere of mass 0.1 kg is attached to a cord of 1m length. Starting from the height of its point of suspension this sphere hits a block of same mass at rest on a frictionless table, If the impact is elastic, then the kinetic energy of the block after the collision is

" ["question_id"]=> string(4) "3714" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14738" ["question_id"]=> string(4) "3714" ["opt_desc"]=> string(24) "

1 J

" } [1]=> array(3) { ["option_id"]=> string(5) "14739" ["question_id"]=> string(4) "3714" ["opt_desc"]=> string(25) "

10 J

" } [2]=> array(3) { ["option_id"]=> string(5) "14740" ["question_id"]=> string(4) "3714" ["opt_desc"]=> string(26) "

0.1 J

" } [3]=> array(3) { ["option_id"]=> string(5) "14741" ["question_id"]=> string(4) "3714" ["opt_desc"]=> string(26) "

0.5 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3762" ["question_id"]=> string(4) "3714" ["option_id"]=> string(5) "14738" } } } [172]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "270" ["ques_text"]=> string(2406) "

The relationship between force and position is shown in the figure given (in one dimensional case). The work done by the force in displacing a body from x=1 cm to x= 5 cm is

" ["question_id"]=> string(4) "3726" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14786" ["question_id"]=> string(4) "3726" ["opt_desc"]=> string(28) "

20 ergs

" } [1]=> array(3) { ["option_id"]=> string(5) "14787" ["question_id"]=> string(4) "3726" ["opt_desc"]=> string(28) "

60 ergs

" } [2]=> array(3) { ["option_id"]=> string(5) "14788" ["question_id"]=> string(4) "3726" ["opt_desc"]=> string(28) "

70 ergs

" } [3]=> array(3) { ["option_id"]=> string(5) "14789" ["question_id"]=> string(4) "3726" ["opt_desc"]=> string(29) "

700 ergs

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3774" ["question_id"]=> string(4) "3726" ["option_id"]=> string(5) "14786" } } } [173]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "270" ["ques_text"]=> string(4611) "

A liquid of density d is pumped by a pump P from situation (i) to situation (ii) as shown in the diagram. If the cross-section of each of the vessels is a, then the work done in pumping (neglecting friction effects) is

" ["question_id"]=> string(4) "3733" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14814" ["question_id"]=> string(4) "3733" ["opt_desc"]=> string(25) "

2dgh

" } [1]=> array(3) { ["option_id"]=> string(5) "14815" ["question_id"]=> string(4) "3733" ["opt_desc"]=> string(25) "

dgha

" } [2]=> array(3) { ["option_id"]=> string(5) "14816" ["question_id"]=> string(4) "3733" ["opt_desc"]=> string(47) "

2dgh2a

" } [3]=> array(3) { ["option_id"]=> string(5) "14817" ["question_id"]=> string(4) "3733" ["opt_desc"]=> string(46) "

dgh2a

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3782" ["question_id"]=> string(4) "3733" ["option_id"]=> string(5) "14817" } } } [174]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "268" ["ques_text"]=> string(3837) "

If each resistance in the figure is of 9 ? then reading of ammeter is        

 

" ["question_id"]=> string(4) "3770" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14962" ["question_id"]=> string(4) "3770" ["opt_desc"]=> string(15) "

5 A

" } [1]=> array(3) { ["option_id"]=> string(5) "14963" ["question_id"]=> string(4) "3770" ["opt_desc"]=> string(15) "

8 A

" } [2]=> array(3) { ["option_id"]=> string(5) "14964" ["question_id"]=> string(4) "3770" ["opt_desc"]=> string(15) "

2 A

" } [3]=> array(3) { ["option_id"]=> string(5) "14965" ["question_id"]=> string(4) "3770" ["opt_desc"]=> string(15) "

9 A

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3819" ["question_id"]=> string(4) "3770" ["option_id"]=> string(5) "14962" } } } [175]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "268" ["ques_text"]=> string(151) "

A wire has resistance 12? . It is bent in the form of a circle. The effective resistance between the two points on any diameter is equal to

" ["question_id"]=> string(4) "3771" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14966" ["question_id"]=> string(4) "3771" ["opt_desc"]=> string(16) "

12 ?

" } [1]=> array(3) { ["option_id"]=> string(5) "14967" ["question_id"]=> string(4) "3771" ["opt_desc"]=> string(14) "

6?

" } [2]=> array(3) { ["option_id"]=> string(5) "14968" ["question_id"]=> string(4) "3771" ["opt_desc"]=> string(14) "

3?

" } [3]=> array(3) { ["option_id"]=> string(5) "14969" ["question_id"]=> string(4) "3771" ["opt_desc"]=> string(15) "

24?

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3820" ["question_id"]=> string(4) "3771" ["option_id"]=> string(5) "14968" } } } [176]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "268" ["ques_text"]=> string(2485) "

In the following circuit the potential difference between P and Q is

" ["question_id"]=> string(4) "3778" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14994" ["question_id"]=> string(4) "3778" ["opt_desc"]=> string(16) "

15 v

" } [1]=> array(3) { ["option_id"]=> string(5) "14995" ["question_id"]=> string(4) "3778" ["opt_desc"]=> string(16) "

10 v

" } [2]=> array(3) { ["option_id"]=> string(5) "14996" ["question_id"]=> string(4) "3778" ["opt_desc"]=> string(15) "

5 v

" } [3]=> array(3) { ["option_id"]=> string(5) "14997" ["question_id"]=> string(4) "3778" ["opt_desc"]=> string(16) "

25 v

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3827" ["question_id"]=> string(4) "3778" ["option_id"]=> string(5) "14996" } } } [177]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "275" ["ques_text"]=> string(233) "

A deniel cell is balanced on 125 cm length of a potentiometer wire. When the cell is short circuited with a 2 ? resistance the balancing length obtained is 100 cm. Internal resistance of the cell will be

" ["question_id"]=> string(4) "3786" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15026" ["question_id"]=> string(4) "3786" ["opt_desc"]=> string(17) "

1.5 ?

" } [1]=> array(3) { ["option_id"]=> string(5) "15027" ["question_id"]=> string(4) "3786" ["opt_desc"]=> string(17) "

0.5 ?

" } [2]=> array(3) { ["option_id"]=> string(5) "15028" ["question_id"]=> string(4) "3786" ["opt_desc"]=> string(18) "

1.25 ?

" } [3]=> array(3) { ["option_id"]=> string(5) "15029" ["question_id"]=> string(4) "3786" ["opt_desc"]=> string(17) "

4/5 ?

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3835" ["question_id"]=> string(4) "3786" ["option_id"]=> string(5) "15027" } } } [178]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "275" ["ques_text"]=> string(3404) "

In the adjoining circuit, the battery E1 has as emf of 12 volt and zero internal resistance, while the battery E has an emf of 2 volt. If the galvanometer reads zero, then the value of resistance X ohm is

" ["question_id"]=> string(4) "3789" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15038" ["question_id"]=> string(4) "3789" ["opt_desc"]=> string(14) "

10

" } [1]=> array(3) { ["option_id"]=> string(5) "15039" ["question_id"]=> string(4) "3789" ["opt_desc"]=> string(15) "

100

" } [2]=> array(3) { ["option_id"]=> string(5) "15040" ["question_id"]=> string(4) "3789" ["opt_desc"]=> string(15) "

500

" } [3]=> array(3) { ["option_id"]=> string(5) "15041" ["question_id"]=> string(4) "3789" ["opt_desc"]=> string(15) "

200

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3838" ["question_id"]=> string(4) "3789" ["option_id"]=> string(5) "15039" } } } [179]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "275" ["ques_text"]=> string(2754) "

As the switch S is closed in the circuit shown in figure, current passed through it is

" ["question_id"]=> string(4) "3794" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15058" ["question_id"]=> string(4) "3794" ["opt_desc"]=> string(26) "

4.5 A

" } [1]=> array(3) { ["option_id"]=> string(5) "15059" ["question_id"]=> string(4) "3794" ["opt_desc"]=> string(26) "

6.0 A

" } [2]=> array(3) { ["option_id"]=> string(5) "15060" ["question_id"]=> string(4) "3794" ["opt_desc"]=> string(26) "

3.0 A

" } [3]=> array(3) { ["option_id"]=> string(5) "15061" ["question_id"]=> string(4) "3794" ["opt_desc"]=> string(16) "

Zero

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3843" ["question_id"]=> string(4) "3794" ["option_id"]=> string(5) "15058" } } } [180]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "276" ["ques_text"]=> string(1820) "

In the following circuit diagram fig. the lengths of the wires AB and BC are same but the radius of AB is three times that of BC. The ratio of potential gradients at AB and BC will be

" ["question_id"]=> string(4) "3799" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15078" ["question_id"]=> string(4) "3799" ["opt_desc"]=> string(17) "

1 : 9

" } [1]=> array(3) { ["option_id"]=> string(5) "15079" ["question_id"]=> string(4) "3799" ["opt_desc"]=> string(17) "

9 : 1

" } [2]=> array(3) { ["option_id"]=> string(5) "15080" ["question_id"]=> string(4) "3799" ["opt_desc"]=> string(17) "

3 : 1

" } [3]=> array(3) { ["option_id"]=> string(5) "15081" ["question_id"]=> string(4) "3799" ["opt_desc"]=> string(17) "

1 : 3

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3848" ["question_id"]=> string(4) "3799" ["option_id"]=> string(5) "15078" } } } [181]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "276" ["ques_text"]=> string(2245) "

A beam of electron is emitted from filament and accelerated by an electric field as shown in figure. The two stops at the left ensure that the electric beam has uniform cross-section

" ["question_id"]=> string(4) "3805" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15102" ["question_id"]=> string(4) "3805" ["opt_desc"]=> string(78) "

The speed of the electron is more at B than at A

" } [1]=> array(3) { ["option_id"]=> string(5) "15103" ["question_id"]=> string(4) "3805" ["opt_desc"]=> string(54) "

The electric current is from left to right

" } [2]=> array(3) { ["option_id"]=> string(5) "15104" ["question_id"]=> string(4) "3805" ["opt_desc"]=> string(83) "

The magnitude of the current is larger at B than at A

" } [3]=> array(3) { ["option_id"]=> string(5) "15105" ["question_id"]=> string(4) "3805" ["opt_desc"]=> string(72) "

The current density is more at B than at A

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3854" ["question_id"]=> string(4) "3805" ["option_id"]=> string(5) "15102" } } } [182]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "277" ["ques_text"]=> string(3650) "

The equivalent resistance of the following diagram between A and B  is                   

" ["question_id"]=> string(4) "3818" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15154" ["question_id"]=> string(4) "3818" ["opt_desc"]=> string(118) "

24Ω

" } [1]=> array(3) { ["option_id"]=> string(5) "15155" ["question_id"]=> string(4) "3818" ["opt_desc"]=> string(21) "

9  ?

" } [2]=> array(3) { ["option_id"]=> string(5) "15156" ["question_id"]=> string(4) "3818" ["opt_desc"]=> string(15) "

6 ?

" } [3]=> array(3) { ["option_id"]=> string(5) "15157" ["question_id"]=> string(4) "3818" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3867" ["question_id"]=> string(4) "3818" ["option_id"]=> string(5) "15157" } } } [183]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "277" ["ques_text"]=> string(2925) "

Four resistances are connected in a circuit in the given figure. The electric current flowing through 4 ohm and 6 ohm resistance is respectively

" ["question_id"]=> string(4) "3826" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15186" ["question_id"]=> string(4) "3826" ["opt_desc"]=> string(45) "

2 amp and 4 amp

" } [1]=> array(3) { ["option_id"]=> string(5) "15187" ["question_id"]=> string(4) "3826" ["opt_desc"]=> string(45) "

1 amp and 2 amp

" } [2]=> array(3) { ["option_id"]=> string(5) "15188" ["question_id"]=> string(4) "3826" ["opt_desc"]=> string(45) "

1 amp and 1 amp

" } [3]=> array(3) { ["option_id"]=> string(5) "15189" ["question_id"]=> string(4) "3826" ["opt_desc"]=> string(45) "

2 amp and 2 amp

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3875" ["question_id"]=> string(4) "3826" ["option_id"]=> string(5) "15189" } } } [184]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "278" ["ques_text"]=> string(3935) "

Resistances of 6 ohm each are connected in the manner shown in adjoining figure. With the current 0.5 ampere as shown in figure, the potential difference VPVQ is

" ["question_id"]=> string(4) "3827" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15190" ["question_id"]=> string(4) "3827" ["opt_desc"]=> string(32) "

 3.6 V

" } [1]=> array(3) { ["option_id"]=> string(5) "15191" ["question_id"]=> string(4) "3827" ["opt_desc"]=> string(17) "

6.0 V

" } [2]=> array(3) { ["option_id"]=> string(5) "15192" ["question_id"]=> string(4) "3827" ["opt_desc"]=> string(17) "

3.0 V

" } [3]=> array(3) { ["option_id"]=> string(5) "15193" ["question_id"]=> string(4) "3827" ["opt_desc"]=> string(17) "

7.2 V

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3876" ["question_id"]=> string(4) "3827" ["option_id"]=> string(5) "15192" } } } [185]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "278" ["ques_text"]=> string(2884) "

If the current through 3 ? resistor is 0.8 A then the potential drop through 4 ? resistor is

" ["question_id"]=> string(4) "3830" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15202" ["question_id"]=> string(4) "3830" ["opt_desc"]=> string(26) "

9.6 V

" } [1]=> array(3) { ["option_id"]=> string(5) "15203" ["question_id"]=> string(4) "3830" ["opt_desc"]=> string(32) "

4.8 V 

" } [2]=> array(3) { ["option_id"]=> string(5) "15204" ["question_id"]=> string(4) "3830" ["opt_desc"]=> string(26) "

2.6 V

" } [3]=> array(3) { ["option_id"]=> string(5) "15205" ["question_id"]=> string(4) "3830" ["opt_desc"]=> string(26) "

2.2 V

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3879" ["question_id"]=> string(4) "3830" ["option_id"]=> string(5) "15203" } } } [186]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "278" ["ques_text"]=> string(4014) "

An ideal ammeter (zero resistance) is connected as shown. The reading of the ammeter is

" ["question_id"]=> string(4) "3833" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15214" ["question_id"]=> string(4) "3833" ["opt_desc"]=> string(13) "

0

" } [1]=> array(3) { ["option_id"]=> string(5) "15215" ["question_id"]=> string(4) "3833" ["opt_desc"]=> string(126) "

E3R

" } [2]=> array(3) { ["option_id"]=> string(5) "15216" ["question_id"]=> string(4) "3833" ["opt_desc"]=> string(126) "

E5R

" } [3]=> array(3) { ["option_id"]=> string(5) "15217" ["question_id"]=> string(4) "3833" ["opt_desc"]=> string(126) "

E7R

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3882" ["question_id"]=> string(4) "3833" ["option_id"]=> string(5) "15217" } } } [187]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "278" ["ques_text"]=> string(3679) "

In the steady state what will be the power dissipation in following circuit\

" ["question_id"]=> string(4) "3841" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15246" ["question_id"]=> string(4) "3841" ["opt_desc"]=> string(26) "

1.5 W

" } [1]=> array(3) { ["option_id"]=> string(5) "15247" ["question_id"]=> string(4) "3841" ["opt_desc"]=> string(24) "

2 W

" } [2]=> array(3) { ["option_id"]=> string(5) "15248" ["question_id"]=> string(4) "3841" ["opt_desc"]=> string(24) "

1 W

" } [3]=> array(3) { ["option_id"]=> string(5) "15249" ["question_id"]=> string(4) "3841" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3890" ["question_id"]=> string(4) "3841" ["option_id"]=> string(5) "15248" } } } [188]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "279" ["ques_text"]=> string(2587) "

Current flows due north in a horizontal transmission line. Magnetic field at a point P vertically above it directed

" ["question_id"]=> string(4) "3842" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15250" ["question_id"]=> string(4) "3842" ["opt_desc"]=> string(23) "

North wards

" } [1]=> array(3) { ["option_id"]=> string(5) "15251" ["question_id"]=> string(4) "3842" ["opt_desc"]=> string(23) "

South wards

" } [2]=> array(3) { ["option_id"]=> string(5) "15252" ["question_id"]=> string(4) "3842" ["opt_desc"]=> string(23) "

Toward east

" } [3]=> array(3) { ["option_id"]=> string(5) "15253" ["question_id"]=> string(4) "3842" ["opt_desc"]=> string(24) "

Towards west

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3891" ["question_id"]=> string(4) "3842" ["option_id"]=> string(5) "15252" } } } [189]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "280" ["ques_text"]=> string(4721) "

What will be the resultant magnetic field at origin due to four infinite length wires. If each wire produces magnetic field 'B' at origin

" ["question_id"]=> string(4) "3844" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15258" ["question_id"]=> string(4) "3844" ["opt_desc"]=> string(24) "

4 B

" } [1]=> array(3) { ["option_id"]=> string(5) "15259" ["question_id"]=> string(4) "3844" ["opt_desc"]=> string(125) "

2B

" } [2]=> array(3) { ["option_id"]=> string(5) "15260" ["question_id"]=> string(4) "3844" ["opt_desc"]=> string(135) "

22B

" } [3]=> array(3) { ["option_id"]=> string(5) "15261" ["question_id"]=> string(4) "3844" ["opt_desc"]=> string(16) "

Zero

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3893" ["question_id"]=> string(4) "3844" ["option_id"]=> string(5) "15260" } } } [190]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "280" ["ques_text"]=> string(7223) "

Figure shows the cress sectional view of the hollow cylindrical conductor with inner radius 'R' and outer radius '2R', cylinder carrying uniformly distributed current along it's axis. The magnetic induction at point 'P' at a distance 3R2from the axis of the cylinder will be

" ["question_id"]=> string(4) "3849" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15278" ["question_id"]=> string(4) "3849" ["opt_desc"]=> string(16) "

Zero

" } [1]=> array(3) { ["option_id"]=> string(5) "15279" ["question_id"]=> string(4) "3849" ["opt_desc"]=> string(225) "

5μ0i72πR

" } [2]=> array(3) { ["option_id"]=> string(5) "15280" ["question_id"]=> string(4) "3849" ["opt_desc"]=> string(225) "

7μ0i18πR

" } [3]=> array(3) { ["option_id"]=> string(5) "15281" ["question_id"]=> string(4) "3849" ["opt_desc"]=> string(225) "

5μ0i36πR

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3898" ["question_id"]=> string(4) "3849" ["option_id"]=> string(5) "15281" } } } [191]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "280" ["ques_text"]=> string(4268) "

For the solenoid shown in figure. The magnetic field at point P is                                 

" ["question_id"]=> string(4) "3851" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15286" ["question_id"]=> string(4) "3851" ["opt_desc"]=> string(229) "

μ0ni4(3+1)

" } [1]=> array(3) { ["option_id"]=> string(5) "15287" ["question_id"]=> string(4) "3851" ["opt_desc"]=> string(189) "

3μ0ni4

" } [2]=> array(3) { ["option_id"]=> string(5) "15288" ["question_id"]=> string(4) "3851" ["opt_desc"]=> string(229) "

μ0ni2(3+1)

" } [3]=> array(3) { ["option_id"]=> string(5) "15289" ["question_id"]=> string(4) "3851" ["opt_desc"]=> string(235) "

μ0ni4(31)

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3900" ["question_id"]=> string(4) "3851" ["option_id"]=> string(5) "15286" } } } [192]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "282" ["ques_text"]=> string(309) "

Light of frequency 8×1015Hz is incident on a substance of photoelectric work function 6.125 eV. The maximum kinetic energy of the emitted photoelectrons is

" ["question_id"]=> string(4) "3874" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15378" ["question_id"]=> string(4) "3874" ["opt_desc"]=> string(26) "

17 eV

" } [1]=> array(3) { ["option_id"]=> string(5) "15379" ["question_id"]=> string(4) "3874" ["opt_desc"]=> string(32) "

 22 eV

" } [2]=> array(3) { ["option_id"]=> string(5) "15380" ["question_id"]=> string(4) "3874" ["opt_desc"]=> string(26) "

27 eV

" } [3]=> array(3) { ["option_id"]=> string(5) "15381" ["question_id"]=> string(4) "3874" ["opt_desc"]=> string(26) "

37 eV

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3923" ["question_id"]=> string(4) "3874" ["option_id"]=> string(5) "15380" } } } [193]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "285" ["ques_text"]=> string(185) "

A photon of energy 12.4 eV is completely absorbed by a hydrogen atom initially in the ground state so that it is excited. The quantum number of the excited state is

" ["question_id"]=> string(4) "3912" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15530" ["question_id"]=> string(4) "3912" ["opt_desc"]=> string(25) "

n =1

" } [1]=> array(3) { ["option_id"]=> string(5) "15531" ["question_id"]=> string(4) "3912" ["opt_desc"]=> string(25) "

n= 3

" } [2]=> array(3) { ["option_id"]=> string(5) "15532" ["question_id"]=> string(4) "3912" ["opt_desc"]=> string(26) "

n = 4

" } [3]=> array(3) { ["option_id"]=> string(5) "15533" ["question_id"]=> string(4) "3912" ["opt_desc"]=> string(110) "

 n=

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3961" ["question_id"]=> string(4) "3912" ["option_id"]=> string(5) "15532" } } } [194]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "287" ["ques_text"]=> string(410) "

When 90Th228 transforms to 83Bi212, then the number of the emitted a–and b–particles is, respectively

" ["question_id"]=> string(4) "3940" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15642" ["question_id"]=> string(4) "3940" ["opt_desc"]=> string(52) "

 8, 7β

" } [1]=> array(3) { ["option_id"]=> string(5) "15643" ["question_id"]=> string(4) "3940" ["opt_desc"]=> string(27) "

4∝,7β

" } [2]=> array(3) { ["option_id"]=> string(5) "15644" ["question_id"]=> string(4) "3940" ["opt_desc"]=> string(27) "

4∝,4β

" } [3]=> array(3) { ["option_id"]=> string(5) "15645" ["question_id"]=> string(4) "3940" ["opt_desc"]=> string(27) "

4∝,1β

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3989" ["question_id"]=> string(4) "3940" ["option_id"]=> string(5) "15645" } } } [195]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "287" ["ques_text"]=> string(201) "

At any instant the ratio of the amount of radioactive substances is 2 : 1. If their half lives be respectively 12 and 16 hours, then after two days, what will be the ratio of the substances

" ["question_id"]=> string(4) "3945" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15662" ["question_id"]=> string(4) "3945" ["opt_desc"]=> string(17) "

1 : 1

" } [1]=> array(3) { ["option_id"]=> string(5) "15663" ["question_id"]=> string(4) "3945" ["opt_desc"]=> string(15) "

2:1

" } [2]=> array(3) { ["option_id"]=> string(5) "15664" ["question_id"]=> string(4) "3945" ["opt_desc"]=> string(15) "

1:2

" } [3]=> array(3) { ["option_id"]=> string(5) "15665" ["question_id"]=> string(4) "3945" ["opt_desc"]=> string(15) "

1:4

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3994" ["question_id"]=> string(4) "3945" ["option_id"]=> string(5) "15662" } } } [196]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "288" ["ques_text"]=> string(163) "

An element has binding energy 8 eV/nucleon. If it has total binding energy 128 eV, then the number of nucleons are (QBP 314)

" ["question_id"]=> string(4) "3959" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15718" ["question_id"]=> string(4) "3959" ["opt_desc"]=> string(13) "

8

" } [1]=> array(3) { ["option_id"]=> string(5) "15719" ["question_id"]=> string(4) "3959" ["opt_desc"]=> string(14) "

14

" } [2]=> array(3) { ["option_id"]=> string(5) "15720" ["question_id"]=> string(4) "3959" ["opt_desc"]=> string(14) "

16

" } [3]=> array(3) { ["option_id"]=> string(5) "15721" ["question_id"]=> string(4) "3959" ["opt_desc"]=> string(14) "

32

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "4008" ["question_id"]=> string(4) "3959" ["option_id"]=> string(5) "15720" } } } [197]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "290" ["ques_text"]=> string(1689) "

Find the magnitude of current in the following circuit

" ["question_id"]=> string(4) "3985" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15822" ["question_id"]=> string(4) "3985" ["opt_desc"]=> string(13) "

0

" } [1]=> array(3) { ["option_id"]=> string(5) "15823" ["question_id"]=> string(4) "3985" ["opt_desc"]=> string(26) "

1 amp

" } [2]=> array(3) { ["option_id"]=> string(5) "15824" ["question_id"]=> string(4) "3985" ["opt_desc"]=> string(28) "

0.1 amp

" } [3]=> array(3) { ["option_id"]=> string(5) "15825" ["question_id"]=> string(4) "3985" ["opt_desc"]=> string(28) "

0.2 amp

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "4034" ["question_id"]=> string(4) "3985" ["option_id"]=> string(5) "15822" } } } [198]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "290" ["ques_text"]=> string(4612) "

In the following common emitter configuration an NPN transistor with current gain β = 100 is used. The output voltage of the amplifier will be

" ["question_id"]=> string(4) "3989" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15838" ["question_id"]=> string(4) "3989" ["opt_desc"]=> string(26) "

10 mV

" } [1]=> array(3) { ["option_id"]=> string(5) "15839" ["question_id"]=> string(4) "3989" ["opt_desc"]=> string(26) "

0.1 V

" } [2]=> array(3) { ["option_id"]=> string(5) "15840" ["question_id"]=> string(4) "3989" ["opt_desc"]=> string(28) "

1.0 V `

" } [3]=> array(3) { ["option_id"]=> string(5) "15841" ["question_id"]=> string(4) "3989" ["opt_desc"]=> string(25) "

10 V

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "4038" ["question_id"]=> string(4) "3989" ["option_id"]=> string(5) "15840" } } } [199]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "179" ["ques_text"]=> string(429) "

Two trains, one travelling at 90 m/s and the other travelling at 120 m/s, are moving towards each other on the same track. When they are 11 km apart, both drivers simultaneously apply brakes. If the brakes decelerate each train at the rate of 3 m/s2,then the distance travelled by the first train is.

" ["question_id"]=> string(4) "4080" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "16202" ["question_id"]=> string(4) "4080" ["opt_desc"]=> string(27) "

1350 m

" } [1]=> array(3) { ["option_id"]=> string(5) "16203" ["question_id"]=> string(4) "4080" ["opt_desc"]=> string(27) "

2400 m

" } [2]=> array(3) { ["option_id"]=> string(5) "16204" ["question_id"]=> string(4) "4080" ["opt_desc"]=> string(27) "

4740 m

" } [3]=> array(3) { ["option_id"]=> string(5) "16205" ["question_id"]=> string(4) "4080" ["opt_desc"]=> string(27) "

8870 m

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "4129" ["question_id"]=> string(4) "4080" ["option_id"]=> string(5) "16202" } } } [200]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "296" ["ques_text"]=> string(378) "

In a playground there is a merry-go-round of mass 120 kg and radius 4 m. The radius of gyration is 3m. A child of mass 30 kg runs at a speed of 5 m/sec tangent to the rim of the merry-go-round when it is at rest and then jumps on it. Neglect friction and find the angular velocity of the merry-go-round and child

" ["question_id"]=> string(4) "4127" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "16390" ["question_id"]=> string(4) "4127" ["opt_desc"]=> string(41) "

0.2 rad/sec

" } [1]=> array(3) { ["option_id"]=> string(5) "16391" ["question_id"]=> string(4) "4127" ["opt_desc"]=> string(41) "

0.1 rad/sec

" } [2]=> array(3) { ["option_id"]=> string(5) "16392" ["question_id"]=> string(4) "4127" ["opt_desc"]=> string(41) "

0.4 rad/sec

" } [3]=> array(3) { ["option_id"]=> string(5) "16393" ["question_id"]=> string(4) "4127" ["opt_desc"]=> string(41) "

0.8 rad/sec

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "4176" ["question_id"]=> string(4) "4127" ["option_id"]=> string(5) "16392" } } } [201]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "300" ["ques_text"]=> string(291) "

Water rises to a height of 10cm in capillary tube and mercury falls to a depth of 3.112cm in the same capillary tube. If the density of mercury is 13.6 and the angle of contact for mercury is 1350, the ratio of surface tension of water and mercury is

" ["question_id"]=> string(4) "4200" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "16682" ["question_id"]=> string(4) "4200" ["opt_desc"]=> string(20) "

1 : 0.15

" } [1]=> array(3) { ["option_id"]=> string(5) "16683" ["question_id"]=> string(4) "4200" ["opt_desc"]=> string(15) "

1:3

" } [2]=> array(3) { ["option_id"]=> string(5) "16684" ["question_id"]=> string(4) "4200" ["opt_desc"]=> string(15) "

1:6

" } [3]=> array(3) { ["option_id"]=> string(5) "16685" ["question_id"]=> string(4) "4200" ["opt_desc"]=> string(19) "

1.5 : 1

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "4249" ["question_id"]=> string(4) "4200" ["option_id"]=> string(5) "16684" } } } [202]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "300" ["ques_text"]=> string(2135) "

In a U-tube the radii of two columns are respectively r1 and r2 and if a liquid of density d filled in it has level difference of h then the surface tension of the liquid is

" ["question_id"]=> string(4) "4205" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "16702" ["question_id"]=> string(4) "4205" ["opt_desc"]=> string(241) "

T=hdgr2r1

" } [1]=> array(3) { ["option_id"]=> string(5) "16703" ["question_id"]=> string(4) "4205" ["opt_desc"]=> string(258) "

T=(r2r1)hdg2

" } [2]=> array(3) { ["option_id"]=> string(5) "16704" ["question_id"]=> string(4) "4205" ["opt_desc"]=> string(252) "

T=(r1+r2)hdg2

" } [3]=> array(3) { ["option_id"]=> string(5) "16705" ["question_id"]=> string(4) "4205" ["opt_desc"]=> string(365) "

T=hdg2(r1r2)r2r1

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "4254" ["question_id"]=> string(4) "4205" ["option_id"]=> string(5) "16705" } } } } 12|Sureden:Your Education Partner
Faraday connected a coil to a galvanometer and brought a magnet close to the coil or took it away form the coil. In both the case he observed deflection in the galvanometer.
EMF can be induced by every that mean is which flux linked with the conductor became varying. EMF induced in a straight conductor moving in the magnetic field. φ =BA 
Whenever a large conductor i.e. 2 dimension or 3 dimension conductor in placed in varying magnetic field an EMF is induced in it due to the find closed paths within concentric circular currents known as eddy currents. Eddy currents by nature are con
Consider a coil connected to a battery through a key. When the circuit is switched on the current starts growing through the coil and very soon acquires its maximum value. Duri
Whenever the primary circuit is switched on or off deflection is observed in the secondary circuit. At the time of switching on or the circuit the current in primary various wh
It is divided into 2 parts : (1.1) Brain and (1.2) spinal cord. (1.1)        
It is a device which works on AC. It is used to increase as decrease the magnitude of alternate voltage as alternating current. Principle :-
Frictional electricity : The electricity developed by rubbing or friction is called frictional electricity. The rubbed substa
Charge --Electric charge is the physical property of matter that causes it to experience a force when placed in an electromagnetic field. Two kinds of charges : The following simple experiment proves these facts: Rub a gla
The study of electric charges in motion is called current electricity. Electric current :- the flow of electric charges through a conductor constit
Electromotive force:- the emf of a source is defined as the work done by the source in taking a unit positive charge from its lower po
Ohm’s law:- this law states that the current flowing through a conductor is directly proportional to the potential difference ap
it is the property by virtue of which a conductor oppose the low of charges through it. SI unit of resistance is Ohm. 1 ohm is the resistance offered by a conductor if
It states that the force of attraction or repulsion between two stationary point charges is Directly proportional to the product of the magnitudes of the two
Electric field: The electric field at a point is defined as the electrostatic force per unit test charge acting on a vanishingly small positive test charge placed at that point. Hence E͛
Electric field due to a point charge: As shown in fig. consider a point charge q placed at the origin o. we wish to determine its electric field at a point P at distance r form it. For this, imagine a test charge q0 placed at point p. according to
Different types of Continuous Charge Distribution : Volume Charge Distribution : it is charge distribution spread over a three dimensional volume or region V of space. Volume charge density at any point in this volume as the charge con
Electric Dipole: A pair of equal and opposite charges separate by a small distance is called electric dipole. Dipole Moment: It measures the strength of an eclectic dipole whose magnitude is either charge times the separation between t
Dipole field: The electric field produced by an electric dipole is called dipole field. Electric field at an axial point of an electric dipole: Consider an electric dipole consisting of charges +q and –q, se
Torque on a Dipole in a Uniform Field: consider an electric dipole consisting of charges +q and –q and of length 2a placed in a unifor
In a non-uniform electric field, the +q and –q charges of a dipole experiences different forces (not equal and opposite) at slightly different positions in the field and
Electric lines of force: An electric lines of force may be defined as the curve along which a small positive charge would tend to move when
Electric flux : The electric flux through a given area held inside an electric field is the measure of the total number of electric lines of
Applications of Gauss Law Electric field due to an infinitely long straight charged wire: Consider a thin infinitely
SOLUTIONS A solution is a homogeneous mixture to two or more chemically non reacting substance whose composition can be varied with in certain lim
Methods of expressing the concentration of Solution:- The concentration of a solution means the amount of solute present in the given quantity of
Vapour Pressure:- All the liquids have a tendency to form the vapours. These vapours exert pressure on the liquid surface. “The pressure exe
Ideal solutions:- “Ideal solutions are those solutions which obey the Raoult’s law under all the conditions of temperature and concentration&rdquo
Azeotropes and Azeotropic Mixtures:- A mixture of two miscible liquids can be separated by the method of fractional distillation due to difference in their bo
The colligative properties are also called the democrative properties. These are discussed as follows:- Relative lowering o
Load More...
cover

Test Details

The parameter, on which the value of the determinant

cover

Test Details

The number of distinct real roots of

cover

Test Details

The determinant

cover

Test Details

If f(x) =

cover

Test Details

If A=α22α

cover

Test Details

If α, β ≠ 0 and f(n) = αn + βn and

cover

Test Details

The determinant

cover

Test Details

If the adjoint of a 3 x 3 matrix P is

cover

Test Details

If A and B are two sets such that A and 12 elements, B has 17 elements and A ∪ B has 21 elements, then number of elements in A ∩ B are

cover

Test Details

In a class of 25 students, 12 have taken mathematics, 8 have taken mathematics but not biology. If each student has taken either mathematics or biology or both, then the number of students who have taken both the subjects is

cover

Test Details

Two point charges +2C and +6C repel each other with a force of 12 Newtons. If a charge of – 4C is given to each of these charges the force now is

cover

Test Details

The packing efficiency of the two-dimensional square unit cell shown below

cover

Test Details

A compound MpXq has cubic close packing (ccp) arrangement of X. Its unit cell structure is shown below The empirical formula of the compound,  is

cover

Test Details

The arrangement of X- ions around A+ io in solid AX is given in the figure (not drawn to scale). If the radius of X- is 250 pm, the radius of A+ is

cover

Test Details

Atomic radius of aluminium is 120 pm. If aluminium has a fcc structure, the edge length of the unit cell is:

cover

Test Details

In figure are shown charges q1 = + 2 × 10–8 C and q2 = – 0.4 × 10–8 C. A charge q3 = 0.2 × 10–8 C in moved along the arc of a circle

cover

Test Details

The field pattern which is not possible is given by

cover

Test Details

Due to an electric dipole shown in fig., the electric field intensity is parallel to dipole axis :

cover

Test Details

In the figure a carbon resistor has band of different colours on its body. The resistance of the following body is [Kerala PET 2002]

cover

Test Details

The specific conductance of a 0.1 N KCl solution at 23°C is 0.012 ohm-1 cm-1. The resistance of cell containing the solution at the same temperature was found to be 55 ohm. The cell constant will be

cover

Test Details

The equivalent conductances of Ba+2 and Cl- are 127 and 76 ohm-1 cm-1 eq-1 respectively at infinite dilution. The equivalent conductance of BaCl2 at infinite dilution will be

cover

Test Details

The graph shows the behaviour of a length of wire in the region for which the substance obeys Hooke’s law. P and Q represent

cover

Test Details

In the adjoining circuit, the battery E1 has as emf of 12 volt and zero internal resistance, while the battery E has an emf of 2 volt. If the galvanometer reads zero, then the value of resistance X ohm is   [NCERT 19

cover

Test Details

The magnitude and direction of the current in the circuit shown will be   [CPMT 1986, 88]

cover

Test Details

What will be the equivalent resistance of circuit shown in figure between points A and D           [CBSE PMT 1996]

cover

Test Details

One litre hard water contains 12.00 mg Mg2+. mili-equivalents of washing soda required to remove its hardness is [1988] 

cover

Test Details

The relationship between force and position is shown in the figure given (in one dimensional case). The work done by the force in displacing a body from x=1 cm to x= 5 cm is                  

cover

Test Details

Name of the compound given below

cover

Test Details

The chirality of the compound

cover

Test Details

The state of hybridization of C2, C3, C5 and C6 of the hydrocarbon,

cover

Test Details

If two vectors of equal magnitude are placed at 120 degree their resultant is equal to

cover

Test Details

Two inclined frictionless tracks of different inclinations (q1 < q2) meet at A from where two blocks P and Q of different masses are allowed to slide down from rest at the same time, one on each track as shown in fig.

cover

Test Details

Two masses M and m are connected by a weight less string. They are pulled by a force F on a frictionless horizontal surface. The tension in the string will be

cover

Test Details

A cricket ball of mass 150 gm is moving with a velocity of 12 m/s and is hit by a bat so that the ball is turned back with a velocity of 20 m/s. The force of blow acts for 0.01s on the ball. The average force exerted by the bat on the ball

cover

Test Details

Forx∈R,limx→∞

cover

Test Details

One litre hard water contains 12.00 mg Mg2+ Milliequivalents of washing soda required to remove its hardness is                          (1988)

cover

Test Details

Liquid benzene (C6H6) burns in oxygen according to the equation 2C6H6(l) + 1502(g) --> 12CO2(g)+ 6H2O(g) How many liters of O2 at STP are needed to complete the combustion of 39 g l

cover

Test Details

Vitamin B12 contains                                            

cover

Test Details

The gene for dibetese mellitus is :                                       (BHU 2012)

cover

Test Details

Sin12ο.sin48ο.sin54ο is equal to

cover

Test Details

The weight of a molecule of the compound C60H122 is

cover

Test Details

cos2π12+cos2π4+

cover

Test Details

50 ml 10 N H2SO4, 25 ml 12 N HCl and 40 ml 5 N HNO3 were mixed together and the volume of the mixture was made 1000 ml by adding water. The normality of the resultant solution will be

cover

Test Details

Name of the compound given below

cover

Test Details

The chirality of the compound

cover

Test Details

The state of hybridization of C2, C3, C5 and C6 of the hydrocarbon,

cover

Test Details

Which of the following is fast debrominated?

cover

Test Details

Monomer of

cover

Test Details

Vitamin B12 contains

cover

Test Details

If isotopic distribution of C-12 and C-14 is 98% and 2% respectively then the no. of C-14 atoms in 12 gm of carbon is

cover

Test Details

A compound made up of two elements A and B is found to contain 25% A (Atomic mass = 12.5) and 75% B (Atomic mass = 37.5). The simplest formula of the compound is

cover

Test Details

On analysis a certain compound was found to contain iodine and oxygen in the ratio of 254 gm of iodine (atomic mass 127) and 80 gm oxygen (at mass=16). What is the formula of the compound.

cover

Test Details

Current flows due north in a horizontal transmission line. Magnetic field at a point P vertically above it directed

cover

Test Details

12 gm of Mg (Atomic mass 24) will react completely with hydrochloric acid to give

cover

Test Details

1.12 ml of a gas is produced at S.T.P. by the action of 4.12 mg of alcohol ROH with methyl magnesium Iodide. The molecular mass of alcohol is

cover

Test Details

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic  mass unit, the mass of one mole of the substance will

cover

Test Details

Volume of a gas at STP is 1.12 x 10-7 cc. Calculate the number of molecules in it

cover

Test Details

A charge + q and a charge –q are placed at x = +a and x = -a, respectively as shown in fig. 12.1. The variation of E is plotted a function of x by assuming positive E as oriented along the positive x-axis. Identify the correct variation of E along the x-axis.

cover

Test Details

Equivalent conductance of NaCl, HCl and C2H5COONa at infinite dilution are 126.45 426.16 and 91 ohm-1 cm2, respectively. The equivalent conductance of C2H5COOH is            

cover

Test Details

An element having bcc structure has 12.08 x 1023 unit cells. The number of atoms in these cells is

cover

Test Details

Select the law that corresponds to the data shown for the following reaction: A + B → Products Expt.                   [A]           &nbs

cover

Test Details

If A and B are two sets such that A has 12 elements, B has 17 elements and A ∪ B has 21 elements, then number of elements in A ∩ B are

cover

Test Details

In a class of 25 students, 12 have taken mathematics, 8 have taken mathematics but not biology. If each student has taken either mathematics or biology or both, then the number of students who have taken both the subjects is

cover

Test Details

The number of ways of selecting two numbers from the set {1, 2… ..12} whose sum is divisible by 3 is

cover

Test Details

The shortest distance between the lines x + a = 2y – 12z and x = y + 20 = 6(z-a)is

cover

Test Details

The gravitational potential in a region is given by V = (3x + 4y + 12z) J/kg. The modulus of the gravitational field at (x = 1, y = 0, z = 3) is

cover

Test Details

Find the position of point from wire 'B' where net magnetic field is zero due to following current distribution

cover

Test Details

Find out the magnitude of the magnetic field at point P due to following current distribution

cover

Test Details

An equilateral triangle of side 'a' carries a current i then find out the magnetic field at point P which is vertex of triangle

cover

Test Details

The gravitational potential in a region is given by V = (3x + 4y + 12z) J/kg. The modulus of the gravitational field at (x = 1, y = 0, z = 3) is  

cover

Test Details

The equation 5x2-12xy+4y2=0 represents

cover

Test Details

A bag contains for tickets marked with numbers 112, 121, 211, 222. One ticket is drawn at random from the bag. Let Ei (i=1, 2, 3) denote the event that the digit on the ticket is 2. Then

cover

Test Details

Find magnetic field at centre O in each of the following figure

cover

Test Details

Find magnetic field at centre O in each of each of the following figure

cover

Test Details

For the solenoid shown in figure. The magnetic field at point P is

cover

Test Details

Figure shows the cress sectional view of the hollow cylindrical conductor with inner radius 'R' and outer radius '2R', cylinder carrying uniformly distributed current along it's axis. The magnetic induction at point 'P' at a distance 3R/2

cover

Test Details

A coil of 50 turns is situated in a magnetic field b = 0.25weber/m2 as shown in figure. A current of 2A is flowing in the coil. Torque acting on the coil will be

cover

Test Details

 Find out the magnitude of the magnetic field at point P due to following current distribution

cover

Test Details

The magnetic field is downward perpendicular to the plane of the paper and a few charged particles are projected in it. Which of the following is true

cover

Test Details

Wires 1 and 2 carrying currents f1 and f2 respectively are inclined at an angle θ to each other. What is the force on a small element dl of wire 2 at a distance of r from 1 (as shown in figure) due to the magnetic field of wire 1

cover

Test Details

A circular loop of radius a, carrying a current i, is placed in a two-dimensional magnetic field. The centre of the loop coincides with the centre of the field. The strength of the magnetic field at the periphery of the loop is B. Find the magnetic force on the wire

cover

Test Details

A conductor PQRSTU, each side of length L, bent as shown in the figure, carries a current i and is placed in a uniform magnetic induction B directed parallel to the positive Y-axis. The force experience by the wire and its direction are

cover

Test Details

What is the net force on the coil

cover

Test Details

 A metallic block carrying current i is subjected to a uniform magnetic induction B as shown in the figure. The moving charges experience a force F given by ……. which results in the lowering of the potential of the face ……. Assume the

cover

Test Details

A ball is dropped from a spacecraft revolving around the earth at a height of 120 km. What will happen to the ball

cover

Test Details

A circular loop of radius a, carrying a current i, is placed in a two-dimensional magnetic field. The centre of the loop coincides with the centre of the field. The strength of the magnetic field at the periphery of the loop is B. Find the magnetic force on the wire

cover

Test Details

 Find out the magnitude of the magnetic field at point P due to following current distribution

cover

Test Details

 For the solenoid shown in figure. The magnetic field at point P is

cover

Test Details

Figure shows the cress sectional view of the hollow cylindrical conductor with inner radius 'R' and outer radius '2R', cylinder carrying uniformly distributed current along it's axis. The magnetic induction at point 'P' at a distance 3R/2

cover

Test Details

 Find the position of point from wire 'B' where net magnetic field is zero due to following current distribution

cover

Test Details

 An electron moves straight inside a charged parallel plate capacitor at uniform charge density σ. The space between the plates is filled with constant magnetic field of induction  B→.

cover

Test Details

Wires 1 and 2 carrying currents f1 and f2 respectively are inclined at an angle θ to each other. What is the force on a small element dl of wire 2 at a distance of r from 1 (as shown in figure) due to the magnetic field of wire 1

cover

Test Details

A wire abc is carrying current i. It is bent as shown in fig and is placed in a uniform magnetic field of magnetic induction B. Length ab = l and Ð abc = 45o. The ratio of force on ab and on bc is

cover

Test Details

An equilateral triangle of side 'a' carries a current i then find out the magnetic field at point P which is vertex of triangle

cover

Test Details

An infinitely long, straight conductor AB is fixed and a current is passed through it. Another movable straight wire CD of finite length and carrying current is held perpendicular to it and released. Neglect weight of the wire

cover

Test Details

A coil of 50 turns is situated in a magnetic field b = 0.25weber/m2 as shown in figure. A current of 2A is flowing in the coil. Torque acting on the coil will be

cover

Test Details

Find magnetic field at centre O in each of each of the following figure

cover

Test Details

A square coil of N turns (with length of each side equal L) carrying current i is placed in a uniform magnetic field B→=B0j

cover

Test Details

What is the net force on the coil                                            &n

cover

Test Details

Find magnetic field at centre O in each of the following figure

cover

Test Details

Current i flows through a long conducting wire bent at right angle as shown in figure. The magnetic field at a point P on the right bisector of the angle XOY at a distance r from O is

cover

Test Details

A metallic block carrying current i is subjected to a uniform magnetic induction B as shown in the figure. The moving charges experience a force F given by ……. which results in the lowering of the potential of the face ……. Assume the speed

cover

Test Details

A bar magnet with it's poles 25 cm apart and of pole strength 24 amp×m rests with it's centre on a frictionless pivot. A force F is applied on the magnet at a distance of 12 cm  from the pivot so that it is held in equilibrium at

cover

Test Details

Two identical bar magnets with a length 10 cm and weight 50 gm – weight are arranged freely with their like poles facing in a arranged vertical glass tube. The upper magnet hangs in the air above the lower one so that the distance between the nearest pole of the magnet

cover

Test Details

Earth's magnetic field may be supposed to be due to a small bar magnet located at the centre of the earth. If the magnetic field at a point on the magnetic equator is 0.3×10–4 T. Magnet moment of bar magnet is

cover

Test Details

Two magnets are held together in a vibration magnetometer and are allowed to oscillate in the earth's magnetic field. With like poles together 12 oscillations per minute are made but for unlike poles together only 4 oscillations per minute are executed. The ratio of their magnetic moments

cover

Test Details

 A short bar magnet is placed with its south pole towards geographical north. The neutral points are situated at a distance of 20 cm from the centre of the magnet. If BH=0.3 x 10-4 wb/m2 then the magnetic moment of the magnet is

cover

Test Details

In the binomial expansion of (1 + x)14, if the coefficients of the (r + 1)th, (r + 2)th and (r + 3)th terms are in A.P., then 12Cr equals

cover

Test Details

Two magnets of equal mass are joined at right angles to each other as shown the magnet 1 has a magnetic moment 3 times that of magnet 2. This arrangement is pivoted so that it is free to rotate in the horizontal plane. In equilibrium what angle will the magnet 1 subtend with the magnetic merid

cover

Test Details

Earth's magnetic field may be supposed to be due to a small bar magnet located at the centre of the earth. If the magnetic field at a point on the magnetic equator is 0.3×10–4 T. Magnet moment of bar magnet is

cover

Test Details

Two magnets are held together in a vibration magnetometer and are allowed to oscillate in the earth's magnetic field. With like poles together 12 oscillations per minute are made but for unlike poles together only 4 oscillations per minute are executed. The ratio of their magnetic moments

cover

Test Details

The mean of 12 numbers is 24. If 5 is added in every number, the new mean is

cover

Test Details

The mean marks of 120 students is 20. It was later discovered that two marks were wrongly taken as 50 and 80 instead of 15 and 18. The correct mean of marks is

cover

Test Details

The points scored by basket ball team in a series of matches are as follows: 15, 3, 8, 10, 22, 5, 27, 11, 12, 19, 18, 21, 13, 14. Its median is

cover

Test Details

A bar magnet with it's poles 25 cm apart and of pole strength 24 amp×m rests with it's centre on a frictionless pivot. A force F is applied on the magnet at a distance of 12 cm  from the pivot so that it is held in equilibrium at

cover

Test Details

Two identical bar magnets with a length 10 cm and weight 50 gm – weight are arranged freely with their like poles facing in a arranged vertical glass tube. The upper magnet hangs in the air above the lower one so that the distance between the nearest pole of the magnet

cover

Test Details

A short bar magnet is placed with its south pole towards geographical north. The neutral points are situated at a distance of 20 cm from the centre of the magnet. If BH=0.3 x 10-4 wb/m2 then the magnetic moment of the magnet is

cover

Test Details

A gas has pressure P and volume V. It is now compressed adiabatically to 1/32 times the original volume. If (32)1.4=128, the final pressure is

cover

Test Details

In pressure-volume diagram given below, the isochoric, isothermal, and isobaric parts respectively, are

cover

Test Details

 A thermodynamic process is shown in the figure. The pressures and volumes corresponding to some points in the figure are: PA=3 x 104Pa, PB=8 x104 Pa and VA= 2 x 10-3m3, VD=5 x 10-3m3

cover

Test Details

The P-V diagram of a system undergoing thermodynamic transformation is shown in figure. The work done on the system in going from A ® B ® C is 50 J and 20 cal heat is given to the system. The change in internal energy between A

cover

Test Details

In the following indicator diagram, the net amount of work done will be

cover

Test Details

A cyclic process ABCA is shown in the V-T diagram. Process on the P-V diagram is

cover

Test Details

A cyclic process for 1 mole of an ideal gas is shown in figure in the V-T, diagram. The work done in AB, BC and CA respectively

cover

Test Details

Four curves A, B, C and D are drawn in the adjoining figure for a given amount of gas. The curves which represent adiabatic and isothermal changes are

cover

Test Details

A thermodynamic system is taken through the cycle PQRSP process. The net work done by the system is

cover

Test Details

The P-V diagram shows seven curved paths (connected by vertical paths) that can be followed by a gas. Which two of them should be parts of a closed cycle if the net work done by the gas is to be at its maximum value

cover

Test Details

A cyclic process for 1 mole of an ideal gas is shown in figure in the V-T, diagram. The work done in AB, BC and CA respectively

cover

Test Details

An ideal gas of mass m in a state A goes to another state B via three different processes as shown in figure. If Q1, Q2, and Q3 denote the heat absorbed by the gas along the three paths, then

cover

Test Details

Four curves A, B, C and D are drawn in the adjoining figure for a given amount of gas. The curves which represent adiabatic and isothermal changes are

cover

Test Details

A gas has pressure P and volume V. It is now compressed adiabatically to 1/32 times the original volume. If (32)1.4=128, the final pressure is

cover

Test Details

In the following indicator diagram, the net amount of work done will be

cover

Test Details

An ideal gas is taken around ABCA as shown in the above P-V diagram. The work done during a cycle is

cover

Test Details

Carnot cycle (reversible) of a gas represented by a Pressure-Volume curve is shown in the diagram

cover

Test Details

A plane wave is represented by x = 1.2 sin (314 t + 12.56 y) where x and y are distances measured along in x and y direction in meter and t is time in seconds. This wave has            

cover

Test Details

A plane wave is represented by x = 1.2 sin (314 t + 12.56 y) where x and y are distances measured along in x and y direction in meter and t is time in seconds. This wave has

cover

Test Details

A motor car blowing a horn of frequency 124 vibration/sec moves with a velocity 72 km/hr towards a tall wall. The frequency of the reflected sound heard by the driver will be (velocity of sound in air is 330 m/s)

cover

Test Details

The molecules of a given mass of a gas have a rms velocity of 200 m/sec at 27°C and 1.0 x 105 N/m2 pressure. When the temperature is 127°C and pressure is 0.5 x 105 N/m2, the rms velocity

cover

Test Details

The adjoining figure shows graph of pressure and volume of a gas at two temperatures T1 and T2. Which of the following interferences is correct

cover

Test Details

The temperature of 5 mole of a gas which was held at constant volume was changed from 100oC to 120oC. The change in internal energy was found to be 80 J. The total heat capacity of the gas at constant volume will be equal to

cover

Test Details

An experiment is carried on a fixed amount of gas at different temperatures and at high pressure such that it deviates from the ideal gas behaviour. The variation of PV/RT with P is shown in the diagram. The correct variation will correspond to       

cover

Test Details

At the top of a mountain a thermometer reads 7°C and a barometer reads 70 cm of Hg. At the bottom of the mountain these read 27°C and 76 cm of Hg respectively. Comparison of density of air at the top with that of bottom is

cover

Test Details

Two identical glass bulbs are interconnected by a thin glass tube. A gas is filled in these bulbs at N.T.P. If one bulb is placed in ice and another bulb is placed in hot bath, then the pressure of the gas becomes 1.5 times. The temperature of hot bath will be

cover

Test Details

An ideal monoatomic gas is confined in a cylinder by a spring-loaded piston if cross-section 8 x 10-3m2. Initially the gas is at 300K and occupies a volume of 2.4 x 10-3m3 and the spring is in a relaxed state. The gas is heated by a small he

cover

Test Details

The molecules of a given mass of a gas have a rms velocity of 200 m/sec at 27°C and 1.0 x 105 N/m2 pressure. When the temperature is 127°C and pressure is 0.5 x 105 N/m2, the rms velocity

cover

Test Details

The expansion of an ideal gas of mass m at a constant pressure P is given by the straight line D. Then the expansion of the same ideal gas of mass 2m at a pressure P/ 2 is given by the straight line

cover

Test Details

An ideal monoatomic gas is confined in a cylinder by a spring-loaded piston if cross-section 8 x 10-3m2. Initially the gas is at 300K and occupies a volume of 2.4 x 10-3m3 and the spring is in a relaxed state. The gas is heated by a small he

cover

Test Details

Two identical glass bulbs are interconnected by a thin glass tube. A gas is filled in these bulbs at N.T.P. If one bulb is placed in ice and another bulb is placed in hot bath, then the pressure of the gas becomes 1.5 times. The temperature of hot bath will be

cover

Test Details

The temperature of 5 mole of a gas which was held at constant volume was changed from 100oC to 120oC. The change in internal energy was found to be 80 J. The total heat capacity of the gas at constant volume will be equal to

cover

Test Details

At the top of a mountain a thermometer reads 7°C and a barometer reads 70 cm of Hg. At the bottom of the mountain these read 27°C and 76 cm of Hg respectively. Comparison of density of air at the top with that of bottom is

cover

Test Details

A 10 kg mass moves along x-axis. Its acceleration as a function of its position is shown in the figure. What is the total work done on the mass by the force as the mass moves from x=0 to x=8 cm      [AMU (Med.) 2000]

cover

Test Details

A liquid of density d is pumped by a pump P from situation (i) to situation (ii) as shown in the diagram. If the cross-section of each of the vessels is a, then the work done in pumping (neglecting friction effects) is

cover

Test Details

If W1, W2 and W3 represent the work done in moving a particle from A to B along three different paths 1, 2 and 3 respectively (as shown) in the gravitational field of a point mass m, find the correct relation

cover

Test Details

Two carts on horizontal straight rails are pushed apart by an explosion of a powder charge Q placed between the carts. Suppose the coefficients of friction between the carts and rails are identical. If the 200 kg cart travels a distance of 36 metres and stops, the di

cover

Test Details

The graph between the resistive force F acting on a body and the distance covered by the body is shown in the figure. The mass of the body is 25 kg and initial velocity is 2 m/s. When the distance covered by the body is 5m, its kinetic energy would be

cover

Test Details

Two cars of same mass are moving with same speed v on two different roads inclined at an angle θ with each other, as shown in the figure. At the junction of these roads the two cars collide inelastically and move simultaneously with the same speed. The speed of these cars would

cover

Test Details

The relationship between force and position is shown in the figure given (in one dimensional case). The work done by the force in displacing a body from x=1 cm to x= 5 cm is                   

cover

Test Details

Three particles A, B and C of equal mass are moving with the same velocity v along the medians of an equilateral triangle. These particle collide at the centre G of triangle. After collision A becomes stationary, B retraces its pat

cover

Test Details

A neutron with 0.6MeV kinetic energy directly collides with a stationary carbon nucleus (mass number 12). The kinetic energy of carbon nucleus after the collision is

cover

Test Details

A sphere of mass 0.1 kg is attached to a cord of 1m length. Starting from the height of its point of suspension this sphere hits a block of same mass at rest on a frictionless table, If the impact is elastic, then the kinetic energy of the block after the collision is  &

cover

Test Details

A block of mass 2kg is released from A on the track that is one quadrant of a circle of radius 1m. It slides down the track and reaches B with a speed of 4ms-1 and finally stops at C at a distance of 3m from B. The work

cover

Test Details

A bullet of mass m moving with a velocity v strikes a suspended wooden block of mass M as shown in the figure and sticks to it. If the block rises to a height h the initial velocity of the bullet is           

cover

Test Details

A mass of 10 gm, moving horizontally with a velocity of 100 cm/sec, strikes the bob of a pendulum and strikes to it. The mass of the bob is also 10 gm (see fig.) The maximum height to which the system can be raised is (g=10 m/sec2)

cover

Test Details

A car of mass 1250 kg experience a resistance of 750 N when it moves at 30ms–1. If the engine can develop 30kW at this speed, the maximum acceleration that the engine can produce is

cover

Test Details

Six identical balls are lined in a straight groove made on a horizontal frictionless surface as shown. Two similar balls each moving with a velocity v collide with the row of 6 balls from left. What will happen

cover

Test Details

A car of mass 1250 kg experience a resistance of 750 N when it moves at 30ms–1. If the engine can develop 30kW at this speed, the maximum acceleration that the engine can produce is

cover

Test Details

A block of mass 2kg is released from A on the track that is one quadrant of a circle of radius 1m. It slides down the track and reaches B with a speed of 4ms-1 and finally stops at C at a distance of 3m from B. The work

cover

Test Details

A block of mass M slides along the sides of a bowl as shown in the figure. The walls of the bowl are frictionless and the base has coefficient of friction 0.2. If the block is released from the top of the side, which is 1.5 m high, where will the block come to rest ? Given th

cover

Test Details

A sphere of mass 0.1 kg is attached to a cord of 1m length. Starting from the height of its point of suspension this sphere hits a block of same mass at rest on a frictionless table, If the impact is elastic, then the kinetic energy of the block after the collision is

cover

Test Details

The relationship between force and position is shown in the figure given (in one dimensional case). The work done by the force in displacing a body from x=1 cm to x= 5 cm is

cover

Test Details

A liquid of density d is pumped by a pump P from situation (i) to situation (ii) as shown in the diagram. If the cross-section of each of the vessels is a, then the work done in pumping (neglecting friction effects) is

cover

Test Details

If each resistance in the figure is of 9 ? then reading of ammeter is        

cover

Test Details

A wire has resistance 12? . It is bent in the form of a circle. The effective resistance between the two points on any diameter is equal to

cover

Test Details

In the following circuit the potential difference between P and Q is

cover

Test Details

A deniel cell is balanced on 125 cm length of a potentiometer wire. When the cell is short circuited with a 2 ? resistance the balancing length obtained is 100 cm. Internal resistance of the cell will be

cover

Test Details

In the adjoining circuit, the battery E1 has as emf of 12 volt and zero internal resistance, while the battery E has an emf of 2 volt. If the galvanometer reads zero, then the value of resistance X ohm is

cover

Test Details

As the switch S is closed in the circuit shown in figure, current passed through it is

cover

Test Details

In the following circuit diagram fig. the lengths of the wires AB and BC are same but the radius of AB is three times that of BC. The ratio of potential gradients at AB and BC will be

cover

Test Details

A beam of electron is emitted from filament and accelerated by an electric field as shown in figure. The two stops at the left ensure that the electric beam has uniform cross-section

cover

Test Details

The equivalent resistance of the following diagram between A and B  is                   

cover

Test Details

Four resistances are connected in a circuit in the given figure. The electric current flowing through 4 ohm and 6 ohm resistance is respectively

cover

Test Details

Resistances of 6 ohm each are connected in the manner shown in adjoining figure. With the current 0.5 ampere as shown in figure, the potential difference VP – VQ is

cover

Test Details

If the current through 3 ? resistor is 0.8 A then the potential drop through 4 ? resistor is

cover

Test Details

An ideal ammeter (zero resistance) is connected as shown. The reading of the ammeter is

cover

Test Details

In the steady state what will be the power dissipation in following circuit\

cover

Test Details

Current flows due north in a horizontal transmission line. Magnetic field at a point P vertically above it directed

cover

Test Details

What will be the resultant magnetic field at origin due to four infinite length wires. If each wire produces magnetic field 'B' at origin

cover

Test Details

Figure shows the cress sectional view of the hollow cylindrical conductor with inner radius 'R' and outer radius '2R', cylinder carrying uniformly distributed current along it's axis. The magnetic induction at point 'P' at a distance

cover

Test Details

For the solenoid shown in figure. The magnetic field at point P is                                 

cover

Test Details

Light of frequency 8×1015Hz is incident on a substance of photoelectric work function 6.125 eV. The maximum kinetic energy of the emitted photoelectrons

cover

Test Details

A photon of energy 12.4 eV is completely absorbed by a hydrogen atom initially in the ground state so that it is excited. The quantum number of the excited state is

cover

Test Details

When 90Th228 transforms to 83Bi212

cover

Test Details

At any instant the ratio of the amount of radioactive substances is 2 : 1. If their half lives be respectively 12 and 16 hours, then after two days, what will be the ratio of the substances

cover

Test Details

An element has binding energy 8 eV/nucleon. If it has total binding energy 128 eV, then the number of nucleons are (QBP 314)

cover

Test Details

Find the magnitude of current in the following circuit

cover

Test Details

In the following common emitter configuration an NPN transistor with current gain β = 100 is used. The output voltage of the amplifier will be

cover

Test Details

Two trains, one travelling at 90 m/s and the other travelling at 120 m/s, are moving towards each other on the same track. When they are 11 km apart, both drivers simultaneously apply brakes. If the brakes decelerate each train at the rate of

cover

Test Details

In a playground there is a merry-go-round of mass 120 kg and radius 4 m. The radius of gyration is 3m. A child of mass 30 kg runs at a speed of 5 m/sec tangent to the rim of the merry-go-round when it is at rest and then jumps on it. Neglec

cover

Test Details

Water rises to a height of 10cm in capillary tube and mercury falls to a depth of 3.112cm in the same capillary tube. If the density of mercury is 13.6 and the angle of contact for mercury is 1350, the ratio of surface tension of water and mercury is

cover

Test Details

In a U-tube the radii of two columns are respectively r1 and r2 and if a liquid of density d filled in it has level difference of h then the surface tension of the liquid is

Coming Soon...