array(145) { [0]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "12" ["ques_text"]=> string(17280) "

The parameter, on which the value of the determinant

Does not depend upon, is

" ["question_id"]=> string(3) "144" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(3) "573" ["question_id"]=> string(3) "144" ["opt_desc"]=> string(13) "

a

" } [1]=> array(3) { ["option_id"]=> string(3) "574" ["question_id"]=> string(3) "144" ["opt_desc"]=> string(13) "

d

" } [2]=> array(3) { ["option_id"]=> string(3) "575" ["question_id"]=> string(3) "144" ["opt_desc"]=> string(13) "

p

" } [3]=> array(3) { ["option_id"]=> string(3) "576" ["question_id"]=> string(3) "144" ["opt_desc"]=> string(13) "

x

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "148" ["question_id"]=> string(3) "144" ["option_id"]=> string(3) "575" } } } [1]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "12" ["ques_text"]=> string(12731) "

The number of distinct real roots of

in the interval -π4xπ4is

" ["question_id"]=> string(3) "146" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(3) "581" ["question_id"]=> string(3) "146" ["opt_desc"]=> string(13) "

1

" } [1]=> array(3) { ["option_id"]=> string(3) "582" ["question_id"]=> string(3) "146" ["opt_desc"]=> string(13) "

0

" } [2]=> array(3) { ["option_id"]=> string(3) "583" ["question_id"]=> string(3) "146" ["opt_desc"]=> string(13) "

3

" } [3]=> array(3) { ["option_id"]=> string(3) "584" ["question_id"]=> string(3) "146" ["opt_desc"]=> string(13) "

2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "150" ["question_id"]=> string(3) "146" ["option_id"]=> string(3) "581" } } } [2]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "12" ["ques_text"]=> string(9305) "

The determinant= 0, if

" ["question_id"]=> string(3) "156" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(3) "621" ["question_id"]=> string(3) "156" ["opt_desc"]=> string(29) "

x, y, z are in AP

" } [1]=> array(3) { ["option_id"]=> string(3) "622" ["question_id"]=> string(3) "156" ["opt_desc"]=> string(29) "

x, y, z are in HP

" } [2]=> array(3) { ["option_id"]=> string(3) "623" ["question_id"]=> string(3) "156" ["opt_desc"]=> string(29) "

x, y, z are in GP

" } [3]=> array(3) { ["option_id"]=> string(3) "624" ["question_id"]=> string(3) "156" ["opt_desc"]=> string(32) "

xy, yz, zx are in AP

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "160" ["question_id"]=> string(3) "156" ["option_id"]=> string(3) "623" } } } [3]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "12" ["ques_text"]=> string(12808) "

If f(x) =

then f (100) is equal to

" ["question_id"]=> string(3) "157" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(3) "625" ["question_id"]=> string(3) "157" ["opt_desc"]=> string(13) "

1

" } [1]=> array(3) { ["option_id"]=> string(3) "626" ["question_id"]=> string(3) "157" ["opt_desc"]=> string(13) "

0

" } [2]=> array(3) { ["option_id"]=> string(3) "627" ["question_id"]=> string(3) "157" ["opt_desc"]=> string(16) "

-100

" } [3]=> array(3) { ["option_id"]=> string(3) "628" ["question_id"]=> string(3) "157" ["opt_desc"]=> string(15) "

100

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "161" ["question_id"]=> string(3) "157" ["option_id"]=> string(3) "626" } } } [4]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "18" ["ques_text"]=> string(171) "

Given, 2x – y + 2z = 2, x – 2y + z = - 4, x + y + ƛz = 4, then the value of ƛ such that the given system of equations has no solution, is

" ["question_id"]=> string(3) "228" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(3) "909" ["question_id"]=> string(3) "228" ["opt_desc"]=> string(13) "

3

" } [1]=> array(3) { ["option_id"]=> string(3) "910" ["question_id"]=> string(3) "228" ["opt_desc"]=> string(14) "

-3

" } [2]=> array(3) { ["option_id"]=> string(3) "911" ["question_id"]=> string(3) "228" ["opt_desc"]=> string(13) "

1

" } [3]=> array(3) { ["option_id"]=> string(3) "912" ["question_id"]=> string(3) "228" ["opt_desc"]=> string(13) "

0

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "232" ["question_id"]=> string(3) "228" ["option_id"]=> string(3) "911" } } } [5]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "18" ["ques_text"]=> string(14003) "

If α, β ≠ 0 and f(n) = αn + βn and

= K(1 - α)2 (1 – β)2 (α – β)2,then K is equal to

" ["question_id"]=> string(3) "231" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(3) "921" ["question_id"]=> string(3) "231" ["opt_desc"]=> string(90) "

αβ

" } [1]=> array(3) { ["option_id"]=> string(3) "922" ["question_id"]=> string(3) "231" ["opt_desc"]=> string(14) "

-1

" } [2]=> array(3) { ["option_id"]=> string(3) "923" ["question_id"]=> string(3) "231" ["opt_desc"]=> string(115) "

1αβ

" } [3]=> array(3) { ["option_id"]=> string(3) "924" ["question_id"]=> string(3) "231" ["opt_desc"]=> string(13) "

1

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "235" ["question_id"]=> string(3) "231" ["option_id"]=> string(3) "924" } } } [6]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "18" ["ques_text"]=> string(9380) "

The determinant

is equal to zero, then

" ["question_id"]=> string(3) "233" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(3) "929" ["question_id"]=> string(3) "233" ["opt_desc"]=> string(29) "

a, b, c are in AP

" } [1]=> array(3) { ["option_id"]=> string(3) "930" ["question_id"]=> string(3) "233" ["opt_desc"]=> string(29) "

a, b, c are in HP

" } [2]=> array(3) { ["option_id"]=> string(3) "931" ["question_id"]=> string(3) "233" ["opt_desc"]=> string(29) "

a, b, c are in GP

" } [3]=> array(3) { ["option_id"]=> string(3) "932" ["question_id"]=> string(3) "233" ["opt_desc"]=> string(71) "

(x – α) is a factor of ax2 + 2bx + c

" } } ["Answer"]=> array(2) { [0]=> array(3) { ["answer_id"]=> string(3) "237" ["question_id"]=> string(3) "233" ["option_id"]=> string(3) "931" } [1]=> array(3) { ["answer_id"]=> string(3) "238" ["question_id"]=> string(3) "233" ["option_id"]=> string(3) "932" } } } [7]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "21" ["ques_text"]=> string(11358) "

The packing efficiency of the two-dimensional square unit cell shown below

" ["question_id"]=> string(3) "370" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "1471" ["question_id"]=> string(3) "370" ["opt_desc"]=> string(18) "

68.02%

" } [1]=> array(3) { ["option_id"]=> string(4) "1472" ["question_id"]=> string(3) "370" ["opt_desc"]=> string(18) "

39.27%

" } [2]=> array(3) { ["option_id"]=> string(4) "1473" ["question_id"]=> string(3) "370" ["opt_desc"]=> string(18) "

78.54%

" } [3]=> array(3) { ["option_id"]=> string(4) "1474" ["question_id"]=> string(3) "370" ["opt_desc"]=> string(18) "

74.05%

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "385" ["question_id"]=> string(3) "370" ["option_id"]=> string(4) "1473" } } } [8]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "21" ["ques_text"]=> string(65535) "

A compound MpXq has cubic close packing (ccp) arrangement of X. Its unit cell structure is shown below

The empirical formula of the compound,  is

string(3) "373" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "1483" ["question_id"]=> string(3) "373" ["opt_desc"]=> string(26) "

MX2

" } [1]=> array(3) { ["option_id"]=> string(4) "1484" ["question_id"]=> string(3) "373" ["opt_desc"]=> string(14) "

MX

" } [2]=> array(3) { ["option_id"]=> string(4) "1485" ["question_id"]=> string(3) "373" ["opt_desc"]=> string(38) "

M5X4

" } [3]=> array(3) { ["option_id"]=> string(4) "1486" ["question_id"]=> string(3) "373" ["opt_desc"]=> string(26) "

M2X

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "388" ["question_id"]=> string(3) "373" ["option_id"]=> string(4) "1483" } } } [9]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "21" ["ques_text"]=> string(18250) "

The arrangement of X- ions around A+ io in solid AX is given in the figure (not drawn to scale). If the radius of X- is 250 pm, the radius of A+ is

" ["question_id"]=> string(3) "375" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "1491" ["question_id"]=> string(3) "375" ["opt_desc"]=> string(18) "

125 pm

" } [1]=> array(3) { ["option_id"]=> string(4) "1492" ["question_id"]=> string(3) "375" ["opt_desc"]=> string(18) "

104 pm

" } [2]=> array(3) { ["option_id"]=> string(4) "1493" ["question_id"]=> string(3) "375" ["opt_desc"]=> string(18) "

155 pm

" } [3]=> array(3) { ["option_id"]=> string(4) "1494" ["question_id"]=> string(3) "375" ["opt_desc"]=> string(18) "

158 pm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "390" ["question_id"]=> string(3) "375" ["option_id"]=> string(4) "1492" } } } [10]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "42" ["ques_text"]=> string(6454) "

A constant force F is applied in horizontal direction as shown. Contact force between M and m is N and between m and M’ is N’ then

" ["question_id"]=> string(3) "446" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "1773" ["question_id"]=> string(3) "446" ["opt_desc"]=> string(37) "

N or  N’ equal

" } [1]=> array(3) { ["option_id"]=> string(4) "1774" ["question_id"]=> string(3) "446" ["opt_desc"]=> string(27) "

N > N’

" } [2]=> array(3) { ["option_id"]=> string(4) "1775" ["question_id"]=> string(3) "446" ["opt_desc"]=> string(27) "

N’ > N

" } [3]=> array(3) { ["option_id"]=> string(4) "1776" ["question_id"]=> string(3) "446" ["opt_desc"]=> string(29) "

Insufficient Data

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "461" ["question_id"]=> string(3) "446" ["option_id"]=> string(4) "1774" } } } [11]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "43" ["ques_text"]=> string(18601) "

In figure are shown charges q1 = + 2 × 10–8 C and q2 = – 0.4 × 10–8 C. A charge q3 = 0.2 × 10–8 C in moved along the arc of a circle from C to D. The potential energy of q3                                      [CPMT 1986]

" ["question_id"]=> string(3) "459" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "1825" ["question_id"]=> string(3) "459" ["opt_desc"]=> string(46) "

Will increase approximately by 76%

" } [1]=> array(3) { ["option_id"]=> string(4) "1826" ["question_id"]=> string(3) "459" ["opt_desc"]=> string(47) "

Will decreases approximately by 76%

" } [2]=> array(3) { ["option_id"]=> string(4) "1827" ["question_id"]=> string(3) "459" ["opt_desc"]=> string(28) "

Will remain same

" } [3]=> array(3) { ["option_id"]=> string(4) "1828" ["question_id"]=> string(3) "459" ["opt_desc"]=> string(47) "

Will increases approximately by 12%

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "474" ["question_id"]=> string(3) "459" ["option_id"]=> string(4) "1826" } } } [12]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "48" ["ques_text"]=> string(5350) "

What is the effective force between two charges as compared to force between same two charges placed at same distance.

" ["question_id"]=> string(3) "535" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "2125" ["question_id"]=> string(3) "535" ["opt_desc"]=> string(28) "

=Fair

" } [1]=> array(3) { ["option_id"]=> string(4) "2126" ["question_id"]=> string(3) "535" ["opt_desc"]=> string(29) "

=KFair

" } [2]=> array(3) { ["option_id"]=> string(4) "2127" ["question_id"]=> string(3) "535" ["opt_desc"]=> string(31) "

=Fair /K

" } [3]=> array(3) { ["option_id"]=> string(4) "2128" ["question_id"]=> string(3) "535" ["opt_desc"]=> string(43) "

=Fair /K2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "550" ["question_id"]=> string(3) "535" ["option_id"]=> string(4) "2125" } } } [13]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "48" ["ques_text"]=> string(14107) "

The field pattern which is not possible is given by

" ["question_id"]=> string(3) "592" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "2351" ["question_id"]=> string(3) "592" ["opt_desc"]=> string(13) "

d

" } [1]=> array(3) { ["option_id"]=> string(4) "2352" ["question_id"]=> string(3) "592" ["opt_desc"]=> string(13) "

c

" } [2]=> array(3) { ["option_id"]=> string(4) "2353" ["question_id"]=> string(3) "592" ["opt_desc"]=> string(13) "

b

" } [3]=> array(3) { ["option_id"]=> string(4) "2354" ["question_id"]=> string(3) "592" ["opt_desc"]=> string(13) "

a

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "607" ["question_id"]=> string(3) "592" ["option_id"]=> string(4) "2351" } } } [14]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "56" ["ques_text"]=> string(3509) "

Due to an electric dipole shown in fig., the electric field intensity is parallel to dipole axis :

" ["question_id"]=> string(3) "605" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "2399" ["question_id"]=> string(3) "605" ["opt_desc"]=> string(21) "

at P only

" } [1]=> array(3) { ["option_id"]=> string(4) "2400" ["question_id"]=> string(3) "605" ["opt_desc"]=> string(21) "

at Q only

" } [2]=> array(3) { ["option_id"]=> string(4) "2401" ["question_id"]=> string(3) "605" ["opt_desc"]=> string(30) "

both at P and at Q

" } [3]=> array(3) { ["option_id"]=> string(4) "2402" ["question_id"]=> string(3) "605" ["opt_desc"]=> string(33) "

neither at P nor at Q

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "620" ["question_id"]=> string(3) "605" ["option_id"]=> string(4) "2401" } } } [15]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "71" ["ques_text"]=> string(395) "

In the Bohr’s model of hydrogen atom, the electrons moves around the nucleus in a circular orbit of a radius 5 * 10–11 metre. It’s time period is 1.5 ´ 10–16 sec. The current associated is                  [MNR 1992]

" ["question_id"]=> string(3) "726" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "2877" ["question_id"]=> string(3) "726" ["opt_desc"]=> string(16) "

Zero

" } [1]=> array(3) { ["option_id"]=> string(4) "2878" ["question_id"]=> string(3) "726" ["opt_desc"]=> string(51) "

1.6 x 10–19 A

" } [2]=> array(3) { ["option_id"]=> string(4) "2879" ["question_id"]=> string(3) "726" ["opt_desc"]=> string(17) "

1.7 A

" } [3]=> array(3) { ["option_id"]=> string(4) "2880" ["question_id"]=> string(3) "726" ["opt_desc"]=> string(50) "

1.07 x10–3 A

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "749" ["question_id"]=> string(3) "726" ["option_id"]=> string(4) "2880" } } } [16]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "71" ["ques_text"]=> string(2188) "

From the graph between current i & voltage V shown, identity the portion corresponding to negative resistance[CBSE PMT 1997]

" ["question_id"]=> string(3) "729" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "2889" ["question_id"]=> string(3) "729" ["opt_desc"]=> string(14) "

AB

" } [1]=> array(3) { ["option_id"]=> string(4) "2890" ["question_id"]=> string(3) "729" ["opt_desc"]=> string(14) "

BC

" } [2]=> array(3) { ["option_id"]=> string(4) "2891" ["question_id"]=> string(3) "729" ["opt_desc"]=> string(14) "

CD

" } [3]=> array(3) { ["option_id"]=> string(4) "2892" ["question_id"]=> string(3) "729" ["opt_desc"]=> string(14) "

DE

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "752" ["question_id"]=> string(3) "729" ["option_id"]=> string(4) "2891" } } } [17]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "71" ["ques_text"]=> string(6744) "

In the figure a carbon resistor has band of different colours on its body. The resistance of the following body is [Kerala PET 2002]

" ["question_id"]=> string(3) "732" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "2901" ["question_id"]=> string(3) "732" ["opt_desc"]=> string(27) "

2.2 k?

" } [1]=> array(3) { ["option_id"]=> string(4) "2902" ["question_id"]=> string(3) "732" ["opt_desc"]=> string(27) "

3.3 k?

" } [2]=> array(3) { ["option_id"]=> string(4) "2903" ["question_id"]=> string(3) "732" ["opt_desc"]=> string(27) "

5.6 k?

" } [3]=> array(3) { ["option_id"]=> string(4) "2904" ["question_id"]=> string(3) "732" ["opt_desc"]=> string(26) "

9.1k?

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "755" ["question_id"]=> string(3) "732" ["option_id"]=> string(4) "2904" } } } [18]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "74" ["ques_text"]=> string(342) "

The force required to stretch a steel wire of 1 cm2 cross-section to 1.1 times its length would be Y=2*1011 N/m2                          [MP PET 1992]

" ["question_id"]=> string(3) "773" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "3065" ["question_id"]=> string(3) "773" ["opt_desc"]=> string(30) "

2*106 N

" } [1]=> array(3) { ["option_id"]=> string(4) "3066" ["question_id"]=> string(3) "773" ["opt_desc"]=> string(30) "

2*103 N

" } [2]=> array(3) { ["option_id"]=> string(4) "3067" ["question_id"]=> string(3) "773" ["opt_desc"]=> string(31) "

2*10-6 N

" } [3]=> array(3) { ["option_id"]=> string(4) "3068" ["question_id"]=> string(3) "773" ["opt_desc"]=> string(31) "

2*10-7 N

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "796" ["question_id"]=> string(3) "773" ["option_id"]=> string(4) "3065" } } } [19]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "71" ["ques_text"]=> string(3159) "

The magnitude and direction of the current in the circuit shown will be   [CPMT 1986, 88]

" ["question_id"]=> string(3) "782" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "3097" ["question_id"]=> string(3) "782" ["opt_desc"]=> string(67) "

(7/3)A from a to b through e

" } [1]=> array(3) { ["option_id"]=> string(4) "3098" ["question_id"]=> string(3) "782" ["opt_desc"]=> string(68) "

(7/3)A from b and a through e

" } [2]=> array(3) { ["option_id"]=> string(4) "3099" ["question_id"]=> string(3) "782" ["opt_desc"]=> string(75) "

1.0 A from b to a through e

" } [3]=> array(3) { ["option_id"]=> string(4) "3100" ["question_id"]=> string(3) "782" ["opt_desc"]=> string(75) "

1.0 A from a to b through e

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "805" ["question_id"]=> string(3) "782" ["option_id"]=> string(4) "3100" } } } [20]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "71" ["ques_text"]=> string(5205) "

What will be the equivalent resistance of circuit shown in figure between points A and D           [CBSE PMT 1996]

" ["question_id"]=> string(3) "783" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "3101" ["question_id"]=> string(3) "783" ["opt_desc"]=> string(14) "

10

" } [1]=> array(3) { ["option_id"]=> string(4) "3102" ["question_id"]=> string(3) "783" ["opt_desc"]=> string(14) "

20

" } [2]=> array(3) { ["option_id"]=> string(4) "3103" ["question_id"]=> string(3) "783" ["opt_desc"]=> string(14) "

30

" } [3]=> array(3) { ["option_id"]=> string(4) "3104" ["question_id"]=> string(3) "783" ["opt_desc"]=> string(14) "

40

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "806" ["question_id"]=> string(3) "783" ["option_id"]=> string(4) "3103" } } } [21]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "87" ["ques_text"]=> string(111) "

How many isomers of C5H11OH will be primary alcohols? [1992]

" ["question_id"]=> string(3) "915" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "3629" ["question_id"]=> string(3) "915" ["opt_desc"]=> string(13) "

5

" } [1]=> array(3) { ["option_id"]=> string(4) "3630" ["question_id"]=> string(3) "915" ["opt_desc"]=> string(13) "

4

" } [2]=> array(3) { ["option_id"]=> string(4) "3631" ["question_id"]=> string(3) "915" ["opt_desc"]=> string(13) "

2

" } [3]=> array(3) { ["option_id"]=> string(4) "3632" ["question_id"]=> string(3) "915" ["opt_desc"]=> string(13) "

3

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "939" ["question_id"]=> string(3) "915" ["option_id"]=> string(4) "3630" } } } [22]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "94" ["ques_text"]=> string(6071) "

Name of the compound given below

" ["question_id"]=> string(4) "1010" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "3997" ["question_id"]=> string(4) "1010" ["opt_desc"]=> string(31) "

2, 3-diethylheptane

" } [1]=> array(3) { ["option_id"]=> string(4) "3998" ["question_id"]=> string(4) "1010" ["opt_desc"]=> string(34) "

5-ethyl-6-methyloctane

" } [2]=> array(3) { ["option_id"]=> string(4) "3999" ["question_id"]=> string(4) "1010" ["opt_desc"]=> string(34) "

4-ethyl-3-methyloctane

" } [3]=> array(3) { ["option_id"]=> string(4) "4000" ["question_id"]=> string(4) "1010" ["opt_desc"]=> string(33) "

3-metyl-4-ethyloctane

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1034" ["question_id"]=> string(4) "1010" ["option_id"]=> string(4) "3999" } } } [23]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "94" ["ques_text"]=> string(4730) "

The state of hybridization of C2, C3, C5 and C6 of the hydrocarbon,

Is in the following sequence

" ["question_id"]=> string(4) "1017" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "4025" ["question_id"]=> string(4) "1017" ["opt_desc"]=> string(65) "

sp, sp3, sp2 and sp3

" } [1]=> array(3) { ["option_id"]=> string(4) "4026" ["question_id"]=> string(4) "1017" ["opt_desc"]=> string(65) "

sp3, sp2, sp2 and sp

" } [2]=> array(3) { ["option_id"]=> string(4) "4027" ["question_id"]=> string(4) "1017" ["opt_desc"]=> string(65) "

sp, sp2, sp2 and sp3

" } [3]=> array(3) { ["option_id"]=> string(4) "4028" ["question_id"]=> string(4) "1017" ["opt_desc"]=> string(65) "

sp, sp2, sp3 and sp2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1041" ["question_id"]=> string(4) "1017" ["option_id"]=> string(4) "4025" } } } [24]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "117" ["ques_text"]=> string(6245) "

Two inclined frictionless tracks of different inclinations (q1 < q2) meet at A from where two blocks P and Q of different masses are allowed to slide down from rest at the same time, one on each track as shown in fig.

" ["question_id"]=> string(4) "1315" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "5189" ["question_id"]=> string(4) "1315" ["opt_desc"]=> string(62) "

Both blocks will reach the bottom at the same time

" } [1]=> array(3) { ["option_id"]=> string(4) "5190" ["question_id"]=> string(4) "1315" ["opt_desc"]=> string(80) "

Block Q will reach the bottom earlier than block P

" } [2]=> array(3) { ["option_id"]=> string(4) "5191" ["question_id"]=> string(4) "1315" ["opt_desc"]=> string(60) "

Both blocks reach the bottom with the same speed

" } [3]=> array(3) { ["option_id"]=> string(4) "5192" ["question_id"]=> string(4) "1315" ["opt_desc"]=> string(91) "

Block Q will each the bottom with a higher speed that block P

" } } ["Answer"]=> array(2) { [0]=> array(3) { ["answer_id"]=> string(4) "1347" ["question_id"]=> string(4) "1315" ["option_id"]=> string(4) "5190" } [1]=> array(3) { ["answer_id"]=> string(4) "1348" ["question_id"]=> string(4) "1315" ["option_id"]=> string(4) "5191" } } } [25]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "13" ["ques_text"]=> string(910) "

Ratio of Cp and Cv of a has ‘x’ is 1.4. The number of atoms of the gas ‘x’ present in 11.2 L of it at NTP will be                                                                                                                           (1989)

" ["question_id"]=> string(4) "1553" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6139" ["question_id"]=> string(4) "1553" ["opt_desc"]=> string(34) "

6.02 x 1023

" } [1]=> array(3) { ["option_id"]=> string(4) "6140" ["question_id"]=> string(4) "1553" ["opt_desc"]=> string(33) "

1.2 x 1023

" } [2]=> array(3) { ["option_id"]=> string(4) "6141" ["question_id"]=> string(4) "1553" ["opt_desc"]=> string(34) "

3.01 x 1023

" } [3]=> array(3) { ["option_id"]=> string(4) "6142" ["question_id"]=> string(4) "1553" ["opt_desc"]=> string(34) "

2.01 x 1023

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1590" ["question_id"]=> string(4) "1553" ["option_id"]=> string(4) "6139" } } } [26]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "13" ["ques_text"]=> string(671) "

Boron has two stable isoropes, 10B (19%) and 11B (81%). Calculate average atomic weight or boron in the periodic table.                                                                                       (1990)

" ["question_id"]=> string(4) "1559" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6163" ["question_id"]=> string(4) "1559" ["opt_desc"]=> string(16) "

10.8

" } [1]=> array(3) { ["option_id"]=> string(4) "6164" ["question_id"]=> string(4) "1559" ["opt_desc"]=> string(16) "

10.2

" } [2]=> array(3) { ["option_id"]=> string(4) "6165" ["question_id"]=> string(4) "1559" ["opt_desc"]=> string(16) "

11.2

" } [3]=> array(3) { ["option_id"]=> string(4) "6166" ["question_id"]=> string(4) "1559" ["opt_desc"]=> string(16) "

10.0

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1596" ["question_id"]=> string(4) "1559" ["option_id"]=> string(4) "6163" } } } [27]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "136" ["ques_text"]=> string(1374) "

Given below is an incomplete table about certain hormones, their source glands and one major effect of each on the body of humans. Identify the correct option for the blanks A, B and C :  (CBSE 2011)

                Gland

            Secretion

   Effect on body

  A

 

Alpha cells of Islets of

Langerhans

Anterior pituitary

Oestrogens

 

B

 

C

Maintenance of secondary sexual characters

Raise blood sugar level

 

Oversecretion leads to gigantism

 

" ["question_id"]=> string(4) "1623" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6419" ["question_id"]=> string(4) "1623" ["opt_desc"]=> string(396) "

 Ovary                        Glucagon                                     Growth hormone

" } [1]=> array(3) { ["option_id"]=> string(4) "6420" ["question_id"]=> string(4) "1623" ["opt_desc"]=> string(437) "

Placenta                                   Insulin                                  Vasopressin

" } [2]=> array(3) { ["option_id"]=> string(4) "6421" ["question_id"]=> string(4) "1623" ["opt_desc"]=> string(440) "

Ovary                         Insulin                                              Calcitonin

" } [3]=> array(3) { ["option_id"]=> string(4) "6422" ["question_id"]=> string(4) "1623" ["opt_desc"]=> string(437) "

Placenta                                    Glucagon                                 Calcitonin

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1660" ["question_id"]=> string(4) "1623" ["option_id"]=> string(4) "6419" } } } [28]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "136" ["ques_text"]=> string(233) "

Diabetes insipidus is due to insufficient release of :                           (AMU 2011)

" ["question_id"]=> string(4) "1624" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6423" ["question_id"]=> string(4) "1624" ["opt_desc"]=> string(25) "

Insulin 

" } [1]=> array(3) { ["option_id"]=> string(4) "6424" ["question_id"]=> string(4) "1624" ["opt_desc"]=> string(20) "

Glucagon

" } [2]=> array(3) { ["option_id"]=> string(4) "6425" ["question_id"]=> string(4) "1624" ["opt_desc"]=> string(15) "

ADH

" } [3]=> array(3) { ["option_id"]=> string(4) "6426" ["question_id"]=> string(4) "1624" ["opt_desc"]=> string(21) "

Thyroxine

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1661" ["question_id"]=> string(4) "1624" ["option_id"]=> string(4) "6425" } } } [29]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "141" ["ques_text"]=> string(159) "

Irrespective of the source, pure sample , of water always yields 88.89% mass of oxygen and 11.11% mass of hydrogen. This is explained by the law of

" ["question_id"]=> string(4) "1669" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6603" ["question_id"]=> string(4) "1669" ["opt_desc"]=> string(32) "

Conservation of mass

" } [1]=> array(3) { ["option_id"]=> string(4) "6604" ["question_id"]=> string(4) "1669" ["opt_desc"]=> string(32) "

Multiple proportions

" } [2]=> array(3) { ["option_id"]=> string(4) "6605" ["question_id"]=> string(4) "1669" ["opt_desc"]=> string(32) "

Constant composition

" } [3]=> array(3) { ["option_id"]=> string(4) "6606" ["question_id"]=> string(4) "1669" ["opt_desc"]=> string(27) "

Constant volume

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1706" ["question_id"]=> string(4) "1669" ["option_id"]=> string(4) "6605" } } } [30]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "141" ["ques_text"]=> string(104) "

The vapour density of a gas is 11.2. The volume occupied by 11.2 g of the gas at NTP will be

" ["question_id"]=> string(4) "1680" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6647" ["question_id"]=> string(4) "1680" ["opt_desc"]=> string(18) "

22.4 L

" } [1]=> array(3) { ["option_id"]=> string(4) "6648" ["question_id"]=> string(4) "1680" ["opt_desc"]=> string(18) "

11.2 L

" } [2]=> array(3) { ["option_id"]=> string(4) "6649" ["question_id"]=> string(4) "1680" ["opt_desc"]=> string(15) "

1 L

" } [3]=> array(3) { ["option_id"]=> string(4) "6650" ["question_id"]=> string(4) "1680" ["opt_desc"]=> string(18) "

44.8 L

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1717" ["question_id"]=> string(4) "1680" ["option_id"]=> string(4) "6648" } } } [31]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "154" ["ques_text"]=> string(59) "

The element with the atomic number 118, will be

" ["question_id"]=> string(4) "1874" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "7419" ["question_id"]=> string(4) "1874" ["opt_desc"]=> string(18) "

Alkali

" } [1]=> array(3) { ["option_id"]=> string(4) "7420" ["question_id"]=> string(4) "1874" ["opt_desc"]=> string(21) "

Noble gas

" } [2]=> array(3) { ["option_id"]=> string(4) "7421" ["question_id"]=> string(4) "1874" ["opt_desc"]=> string(28) "

 Lanthanide

" } [3]=> array(3) { ["option_id"]=> string(4) "7422" ["question_id"]=> string(4) "1874" ["opt_desc"]=> string(30) "

Transition element

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1910" ["question_id"]=> string(4) "1874" ["option_id"]=> string(4) "7420" } } } [32]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "159" ["ques_text"]=> string(6071) "

Name of the compound given below

" ["question_id"]=> string(4) "1948" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "7715" ["question_id"]=> string(4) "1948" ["opt_desc"]=> string(31) "

2, 3-diethylheptane

" } [1]=> array(3) { ["option_id"]=> string(4) "7716" ["question_id"]=> string(4) "1948" ["opt_desc"]=> string(34) "

5-ethyl-6-methyloctane

" } [2]=> array(3) { ["option_id"]=> string(4) "7717" ["question_id"]=> string(4) "1948" ["opt_desc"]=> string(34) "

4-ethyl-3-methyloctane

" } [3]=> array(3) { ["option_id"]=> string(4) "7718" ["question_id"]=> string(4) "1948" ["opt_desc"]=> string(33) "

3-metyl-4-ethyloctane

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1984" ["question_id"]=> string(4) "1948" ["option_id"]=> string(4) "7717" } } } [33]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "159" ["ques_text"]=> string(4730) "

The state of hybridization of C2, C3, C5 and C6 of the hydrocarbon,

Is in the following sequence

" ["question_id"]=> string(4) "1971" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "7807" ["question_id"]=> string(4) "1971" ["opt_desc"]=> string(65) "

sp, sp3, sp2 and sp3

" } [1]=> array(3) { ["option_id"]=> string(4) "7808" ["question_id"]=> string(4) "1971" ["opt_desc"]=> string(65) "

sp3, sp2, sp2 and sp

" } [2]=> array(3) { ["option_id"]=> string(4) "7809" ["question_id"]=> string(4) "1971" ["opt_desc"]=> string(65) "

sp, sp2, sp2 and sp3

" } [3]=> array(3) { ["option_id"]=> string(4) "7810" ["question_id"]=> string(4) "1971" ["opt_desc"]=> string(65) "

sp, sp2, sp3 and sp2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2007" ["question_id"]=> string(4) "1971" ["option_id"]=> string(4) "7807" } } } [34]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "164" ["ques_text"]=> string(11599) "

Which of the following is fast debrominated?

" ["question_id"]=> string(4) "2025" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "8023" ["question_id"]=> string(4) "2025" ["opt_desc"]=> string(14) "

IV

" } [1]=> array(3) { ["option_id"]=> string(4) "8024" ["question_id"]=> string(4) "2025" ["opt_desc"]=> string(14) "

II

" } [2]=> array(3) { ["option_id"]=> string(4) "8025" ["question_id"]=> string(4) "2025" ["opt_desc"]=> string(21) "

 III

" } [3]=> array(3) { ["option_id"]=> string(4) "8026" ["question_id"]=> string(4) "2025" ["opt_desc"]=> string(19) "

 I

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2061" ["question_id"]=> string(4) "2025" ["option_id"]=> string(4) "8023" } } } [35]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "164" ["ques_text"]=> string(10980) "

The above transformation proceeds through

" ["question_id"]=> string(4) "2033" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "8055" ["question_id"]=> string(4) "2033" ["opt_desc"]=> string(34) "

Electrophilic-addition

" } [1]=> array(3) { ["option_id"]=> string(4) "8056" ["question_id"]=> string(4) "2033" ["opt_desc"]=> string(32) "

Benzyne intermediate

" } [2]=> array(3) { ["option_id"]=> string(4) "8057" ["question_id"]=> string(4) "2033" ["opt_desc"]=> string(47) "

Activated nucleophilic substitution

" } [3]=> array(3) { ["option_id"]=> string(4) "8058" ["question_id"]=> string(4) "2033" ["opt_desc"]=> string(49) "

 Elimination, addition mechanism

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2069" ["question_id"]=> string(4) "2033" ["option_id"]=> string(4) "8057" } } } [36]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "165" ["ques_text"]=> string(135) "

The edge length of face centred unit cubic cell is 508 pm. If the radus of the cation is 110 pm, the radius of one anion is

" ["question_id"]=> string(4) "2045" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "8103" ["question_id"]=> string(4) "2045" ["opt_desc"]=> string(18) "

144 pm

" } [1]=> array(3) { ["option_id"]=> string(4) "8104" ["question_id"]=> string(4) "2045" ["opt_desc"]=> string(18) "

288 pm

" } [2]=> array(3) { ["option_id"]=> string(4) "8105" ["question_id"]=> string(4) "2045" ["opt_desc"]=> string(18) "

618 pm

" } [3]=> array(3) { ["option_id"]=> string(4) "8106" ["question_id"]=> string(4) "2045" ["opt_desc"]=> string(18) "

398 pm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2081" ["question_id"]=> string(4) "2045" ["option_id"]=> string(4) "8103" } } } [37]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "166" ["ques_text"]=> string(87) "

How many isomers of C5H11OH will be primary alcohols?

" ["question_id"]=> string(4) "2051" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "8127" ["question_id"]=> string(4) "2051" ["opt_desc"]=> string(13) "

5

" } [1]=> array(3) { ["option_id"]=> string(4) "8128" ["question_id"]=> string(4) "2051" ["opt_desc"]=> string(13) "

4

" } [2]=> array(3) { ["option_id"]=> string(4) "8129" ["question_id"]=> string(4) "2051" ["opt_desc"]=> string(13) "

2

" } [3]=> array(3) { ["option_id"]=> string(4) "8130" ["question_id"]=> string(4) "2051" ["opt_desc"]=> string(13) "

3

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2087" ["question_id"]=> string(4) "2051" ["option_id"]=> string(4) "8128" } } } [38]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "183" ["ques_text"]=> string(108) "

On dividing 0.25 by 22.1176 the actual answer is 0.011303. The correctly reported answer will be

" ["question_id"]=> string(4) "2248" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "8885" ["question_id"]=> string(4) "2248" ["opt_desc"]=> string(17) "

0.011

" } [1]=> array(3) { ["option_id"]=> string(4) "8886" ["question_id"]=> string(4) "2248" ["opt_desc"]=> string(16) "

0.01

" } [2]=> array(3) { ["option_id"]=> string(4) "8887" ["question_id"]=> string(4) "2248" ["opt_desc"]=> string(18) "

0.0113

" } [3]=> array(3) { ["option_id"]=> string(4) "8888" ["question_id"]=> string(4) "2248" ["opt_desc"]=> string(17) "

0.013

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2284" ["question_id"]=> string(4) "2248" ["option_id"]=> string(4) "8885" } } } [39]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "186" ["ques_text"]=> string(13135) "

Current flows due north in a horizontal transmission line. Magnetic field at a point P vertically above it directed

" ["question_id"]=> string(4) "2281" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "9009" ["question_id"]=> string(4) "2281" ["opt_desc"]=> string(23) "

North wards

" } [1]=> array(3) { ["option_id"]=> string(4) "9010" ["question_id"]=> string(4) "2281" ["opt_desc"]=> string(23) "

South wards

" } [2]=> array(3) { ["option_id"]=> string(4) "9011" ["question_id"]=> string(4) "2281" ["opt_desc"]=> string(23) "

Toward east

" } [3]=> array(3) { ["option_id"]=> string(4) "9012" ["question_id"]=> string(4) "2281" ["opt_desc"]=> string(24) "

Towards west

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2317" ["question_id"]=> string(4) "2281" ["option_id"]=> string(4) "9011" } } } [40]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "186" ["ques_text"]=> string(4723) "

A wire in the form of a square of side a carries a current i. Then the magnetic induction at the centre of the square wire is (Magnetic permeability of free space = m0)       

" ["question_id"]=> string(4) "2283" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "9017" ["question_id"]=> string(4) "2283" ["opt_desc"]=> string(204) "

µoi2πa

" } [1]=> array(3) { ["option_id"]=> string(4) "9018" ["question_id"]=> string(4) "2283" ["opt_desc"]=> string(209) "

µ0 i2πa

" } [2]=> array(3) { ["option_id"]=> string(4) "9019" ["question_id"]=> string(4) "2283" ["opt_desc"]=> string(219) "

22µ0 iπa

" } [3]=> array(3) { ["option_id"]=> string(4) "9020" ["question_id"]=> string(4) "2283" ["opt_desc"]=> string(209) "

µ0 i2πa

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2319" ["question_id"]=> string(4) "2283" ["option_id"]=> string(4) "9019" } } } [41]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "186" ["ques_text"]=> string(331) "

Electrons move at right angles to a magnetic field of Tesla with a speed of 6 X 1027 m/s. If the specific charge of the electron is 1.7 x 1011 Coul/kg. The radius of the circular path will be                   

" ["question_id"]=> string(4) "2289" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "9041" ["question_id"]=> string(4) "2289" ["opt_desc"]=> string(27) "

2.9 cm

" } [1]=> array(3) { ["option_id"]=> string(4) "9042" ["question_id"]=> string(4) "2289" ["opt_desc"]=> string(27) "

3.9 cm

" } [2]=> array(3) { ["option_id"]=> string(4) "9043" ["question_id"]=> string(4) "2289" ["opt_desc"]=> string(28) "

2.35 cm

" } [3]=> array(3) { ["option_id"]=> string(4) "9044" ["question_id"]=> string(4) "2289" ["opt_desc"]=> string(31) "

 3 cm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2325" ["question_id"]=> string(4) "2289" ["option_id"]=> string(4) "9043" } } } [42]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "186" ["ques_text"]=> string(339) "

A particle with 10–11 coulomb of charge and 10–7 kg mass is moving with a velocity of 108 m/s along the y-axis. A uniform static magnetic field B = 0.5 Tesla is acting along the x-direction. The force on the particle is

" ["question_id"]=> string(4) "2294" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "9061" ["question_id"]=> string(4) "2294" ["opt_desc"]=> string(153) "

5 ´ 10–11 N along i^

" } [1]=> array(3) { ["option_id"]=> string(4) "9062" ["question_id"]=> string(4) "2294" ["opt_desc"]=> string(145) "

5 ´ 103 N along k^

" } [2]=> array(3) { ["option_id"]=> string(4) "9063" ["question_id"]=> string(4) "2294" ["opt_desc"]=> string(169) "

5 ´ 10–11 N along j^

" } [3]=> array(3) { ["option_id"]=> string(4) "9064" ["question_id"]=> string(4) "2294" ["opt_desc"]=> string(168) "

5 ´ 10–4 N along k^

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2330" ["question_id"]=> string(4) "2294" ["option_id"]=> string(4) "9064" } } } [43]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "50" ["ques_text"]=> string(4980) "

A charge + q and a charge –q are placed at x = +a and x = -a, respectively as shown in fig. 12.1. The variation of E is plotted a function of x by assuming positive E as oriented along the positive x-axis. Identify the correct variation of E along the x-axis.

" ["question_id"]=> string(4) "2374" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "9381" ["question_id"]=> string(4) "2374" ["opt_desc"]=> string(6712) "

" } [1]=> array(3) { ["option_id"]=> string(4) "9382" ["question_id"]=> string(4) "2374" ["opt_desc"]=> string(6700) "

" } [2]=> array(3) { ["option_id"]=> string(4) "9383" ["question_id"]=> string(4) "2374" ["opt_desc"]=> string(6676) "

" } [3]=> array(3) { ["option_id"]=> string(4) "9384" ["question_id"]=> string(4) "2374" ["opt_desc"]=> string(6584) "

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2410" ["question_id"]=> string(4) "2374" ["option_id"]=> string(4) "9381" } } } [44]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "192" ["ques_text"]=> string(449) "

The value of k=sin2πk11-icos2πk11is

" ["question_id"]=> string(4) "2643" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "10457" ["question_id"]=> string(4) "2643" ["opt_desc"]=> string(14) "

-1

" } [1]=> array(3) { ["option_id"]=> string(5) "10458" ["question_id"]=> string(4) "2643" ["opt_desc"]=> string(13) "

0

" } [2]=> array(3) { ["option_id"]=> string(5) "10459" ["question_id"]=> string(4) "2643" ["opt_desc"]=> string(14) "

-1

" } [3]=> array(3) { ["option_id"]=> string(5) "10460" ["question_id"]=> string(4) "2643" ["opt_desc"]=> string(13) "

i

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2682" ["question_id"]=> string(4) "2643" ["option_id"]=> string(5) "10460" } } } [45]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "197" ["ques_text"]=> string(2235) "

Find the position of point from wire 'B' where net magnetic field is zero due to following current distribution

" ["question_id"]=> string(4) "2701" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "10689" ["question_id"]=> string(4) "2701" ["opt_desc"]=> string(25) "

4 cm

" } [1]=> array(3) { ["option_id"]=> string(5) "10690" ["question_id"]=> string(4) "2701" ["opt_desc"]=> string(19) "

30/7 cm

" } [2]=> array(3) { ["option_id"]=> string(5) "10691" ["question_id"]=> string(4) "2701" ["opt_desc"]=> string(19) "

12/7 cm

" } [3]=> array(3) { ["option_id"]=> string(5) "10692" ["question_id"]=> string(4) "2701" ["opt_desc"]=> string(16) "

2 cm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2740" ["question_id"]=> string(4) "2701" ["option_id"]=> string(5) "10691" } } } [46]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "197" ["ques_text"]=> string(5333) "

Find out the magnitude of the magnetic field at point P due to following current distribution

" ["question_id"]=> string(4) "2702" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "10693" ["question_id"]=> string(4) "2702" ["opt_desc"]=> string(50) "

μo ia/ πr2

" } [1]=> array(3) { ["option_id"]=> string(5) "10694" ["question_id"]=> string(4) "2702" ["opt_desc"]=> string(50) "

μo ia2/ πr

" } [2]=> array(3) { ["option_id"]=> string(5) "10695" ["question_id"]=> string(4) "2702" ["opt_desc"]=> string(51) "

μo ia/ 2πr2

" } [3]=> array(3) { ["option_id"]=> string(5) "10696" ["question_id"]=> string(4) "2702" ["opt_desc"]=> string(57) "

 2μo ia/ πr2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2741" ["question_id"]=> string(4) "2702" ["option_id"]=> string(5) "10693" } } } [47]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "197" ["ques_text"]=> string(8271) "

An equilateral triangle of side 'a' carries a current i then find out the magnetic field at point P which is vertex of triangle

 

" ["question_id"]=> string(4) "2714" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "10741" ["question_id"]=> string(4) "2714" ["opt_desc"]=> string(229) "

μoi23πa

" } [1]=> array(3) { ["option_id"]=> string(5) "10742" ["question_id"]=> string(4) "2714" ["opt_desc"]=> string(229) "

μoi23πa

" } [2]=> array(3) { ["option_id"]=> string(5) "10743" ["question_id"]=> string(4) "2714" ["opt_desc"]=> string(216) "

23μoiπa

" } [3]=> array(3) { ["option_id"]=> string(5) "10744" ["question_id"]=> string(4) "2714" ["opt_desc"]=> string(16) "

Zero

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2753" ["question_id"]=> string(4) "2714" ["option_id"]=> string(5) "10742" } } } [48]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "202" ["ques_text"]=> string(209) "

A bag contains for tickets marked with numbers 112, 121, 211, 222. One ticket is drawn at random from the bag. Let Ei (i=1, 2, 3) denote the event that the digit on the ticket is 2. Then

" ["question_id"]=> string(4) "2788" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11037" ["question_id"]=> string(4) "2788" ["opt_desc"]=> string(59) "

E1 and E2 are independent

" } [1]=> array(3) { ["option_id"]=> string(5) "11038" ["question_id"]=> string(4) "2788" ["opt_desc"]=> string(59) "

E2 and E3 are independent

" } [2]=> array(3) { ["option_id"]=> string(5) "11039" ["question_id"]=> string(4) "2788" ["opt_desc"]=> string(59) "

E3 and E1 are independent

" } [3]=> array(3) { ["option_id"]=> string(5) "11040" ["question_id"]=> string(4) "2788" ["opt_desc"]=> string(24) "

all of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2828" ["question_id"]=> string(4) "2788" ["option_id"]=> string(5) "11039" } } } [49]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "197" ["ques_text"]=> string(7571) "

Find magnetic field at centre O in each of each of the following figure

" ["question_id"]=> string(4) "2793" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11057" ["question_id"]=> string(4) "2793" ["opt_desc"]=> string(270) "

μoi2r

" } [1]=> array(3) { ["option_id"]=> string(5) "11058" ["question_id"]=> string(4) "2793" ["opt_desc"]=> string(214) "

μoi2r

" } [2]=> array(3) { ["option_id"]=> string(5) "11059" ["question_id"]=> string(4) "2793" ["opt_desc"]=> string(224) "

3μoi8r

" } [3]=> array(3) { ["option_id"]=> string(5) "11060" ["question_id"]=> string(4) "2793" ["opt_desc"]=> string(224) "

3μoi8r

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2833" ["question_id"]=> string(4) "2793" ["option_id"]=> string(5) "11060" } } } [50]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "204" ["ques_text"]=> string(272) "

Electrons move at right angles to a magnetic field of 1.5 x 10-2Tesla with a speed of 6 x 1027m/s. If the specific charge of the electron is 1.7 x 1011 Coul/kg. The radius of the circular path will be

" ["question_id"]=> string(4) "2810" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11125" ["question_id"]=> string(4) "2810" ["opt_desc"]=> string(27) "

2.9 cm

" } [1]=> array(3) { ["option_id"]=> string(5) "11126" ["question_id"]=> string(4) "2810" ["opt_desc"]=> string(27) "

3.9 cm

" } [2]=> array(3) { ["option_id"]=> string(5) "11127" ["question_id"]=> string(4) "2810" ["opt_desc"]=> string(28) "

2.35 cm

" } [3]=> array(3) { ["option_id"]=> string(5) "11128" ["question_id"]=> string(4) "2810" ["opt_desc"]=> string(25) "

3 cm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2850" ["question_id"]=> string(4) "2810" ["option_id"]=> string(5) "11127" } } } [51]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "204" ["ques_text"]=> string(5728) "

For the solenoid shown in figure. The magnetic field at point P is

 

" ["question_id"]=> string(4) "2813" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11137" ["question_id"]=> string(4) "2813" ["opt_desc"]=> string(229) "

μ0ni4(3+1)

" } [1]=> array(3) { ["option_id"]=> string(5) "11138" ["question_id"]=> string(4) "2813" ["opt_desc"]=> string(189) "

3μ0ni4

" } [2]=> array(3) { ["option_id"]=> string(5) "11139" ["question_id"]=> string(4) "2813" ["opt_desc"]=> string(229) "

μ0ni2(3+1)

" } [3]=> array(3) { ["option_id"]=> string(5) "11140" ["question_id"]=> string(4) "2813" ["opt_desc"]=> string(235) "

μ0ni4(31)

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2853" ["question_id"]=> string(4) "2813" ["option_id"]=> string(5) "11137" } } } [52]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "204" ["ques_text"]=> string(14940) "

Figure shows the cress sectional view of the hollow cylindrical conductor with inner radius 'R' and outer radius '2R', cylinder carrying uniformly distributed current along it's axis. The magnetic induction at point 'P' at a distance 3R/2 from the axis of the cylinder will be

 

" ["question_id"]=> string(4) "2815" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11145" ["question_id"]=> string(4) "2815" ["opt_desc"]=> string(16) "

Zero

" } [1]=> array(3) { ["option_id"]=> string(5) "11146" ["question_id"]=> string(4) "2815" ["opt_desc"]=> string(225) "

5μ0i72πR

" } [2]=> array(3) { ["option_id"]=> string(5) "11147" ["question_id"]=> string(4) "2815" ["opt_desc"]=> string(225) "

7μ0i18πR

" } [3]=> array(3) { ["option_id"]=> string(5) "11148" ["question_id"]=> string(4) "2815" ["opt_desc"]=> string(225) "

5μ0i36πR

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2855" ["question_id"]=> string(4) "2815" ["option_id"]=> string(5) "11148" } } } [53]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "204" ["ques_text"]=> string(7815) "

 Find out the magnitude of the magnetic field at point P due to following current distribution

" ["question_id"]=> string(4) "2817" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11153" ["question_id"]=> string(4) "2817" ["opt_desc"]=> string(50) "

μo ia/ πr2

" } [1]=> array(3) { ["option_id"]=> string(5) "11154" ["question_id"]=> string(4) "2817" ["opt_desc"]=> string(50) "

μo ia2/ πr

" } [2]=> array(3) { ["option_id"]=> string(5) "11155" ["question_id"]=> string(4) "2817" ["opt_desc"]=> string(51) "

μo ia/ 2πr2

" } [3]=> array(3) { ["option_id"]=> string(5) "11156" ["question_id"]=> string(4) "2817" ["opt_desc"]=> string(51) "

o ia/ πr2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2857" ["question_id"]=> string(4) "2817" ["option_id"]=> string(5) "11153" } } } [54]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "204" ["ques_text"]=> string(339) "

A particle with 10–11 coulomb of charge and 10–7 kg mass is moving with a velocity of 108 m/s along the y-axis. A uniform static magnetic field B = 0.5 Tesla is acting along the x-direction. The force on the particle is

" ["question_id"]=> string(4) "2823" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11177" ["question_id"]=> string(4) "2823" ["opt_desc"]=> string(153) "

5 ´ 10–11 N along i^

" } [1]=> array(3) { ["option_id"]=> string(5) "11178" ["question_id"]=> string(4) "2823" ["opt_desc"]=> string(145) "

5 ´ 103 N along k^

" } [2]=> array(3) { ["option_id"]=> string(5) "11179" ["question_id"]=> string(4) "2823" ["opt_desc"]=> string(169) "

5 ´ 10–11 N along j^

" } [3]=> array(3) { ["option_id"]=> string(5) "11180" ["question_id"]=> string(4) "2823" ["opt_desc"]=> string(168) "

5 ´ 10–4 N along k^

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2863" ["question_id"]=> string(4) "2823" ["option_id"]=> string(5) "11180" } } } [55]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "205" ["ques_text"]=> string(3858) "

Wires 1 and 2 carrying currents f1 and f2 respectively are inclined at an angle θ to each other. What is the force on a small element dl of wire 2 at a distance of r from 1 (as shown in figure) due to the magnetic field of wire 1

" ["question_id"]=> string(4) "2835" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11225" ["question_id"]=> string(4) "2835" ["opt_desc"]=> string(310) "

μ02πri1,i2dltanθ

" } [1]=> array(3) { ["option_id"]=> string(5) "11226" ["question_id"]=> string(4) "2835" ["opt_desc"]=> string(310) "

μ02πri1,i2dltanθ

" } [2]=> array(3) { ["option_id"]=> string(5) "11227" ["question_id"]=> string(4) "2835" ["opt_desc"]=> string(310) "

μ02πri1,i2dltanθ

" } [3]=> array(3) { ["option_id"]=> string(5) "11228" ["question_id"]=> string(4) "2835" ["opt_desc"]=> string(310) "

μ02πri1,i2dltanθ

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2875" ["question_id"]=> string(4) "2835" ["option_id"]=> string(5) "11227" } } } [56]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "205" ["ques_text"]=> string(11134) "

A circular loop of radius a, carrying a current i, is placed in a two-dimensional magnetic field. The centre of the loop coincides with the centre of the field. The strength of the magnetic field at the periphery of the loop is B. Find the magnetic force on the wire

 

" ["question_id"]=> string(4) "2836" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11229" ["question_id"]=> string(4) "2836" ["opt_desc"]=> string(19) "

πiaB

" } [1]=> array(3) { ["option_id"]=> string(5) "11230" ["question_id"]=> string(4) "2836" ["opt_desc"]=> string(20) "

4πiaB

" } [2]=> array(3) { ["option_id"]=> string(5) "11231" ["question_id"]=> string(4) "2836" ["opt_desc"]=> string(16) "

Zero

" } [3]=> array(3) { ["option_id"]=> string(5) "11232" ["question_id"]=> string(4) "2836" ["opt_desc"]=> string(20) "

2πiaB

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2876" ["question_id"]=> string(4) "2836" ["option_id"]=> string(5) "11232" } } } [57]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "206" ["ques_text"]=> string(6124) "

A conductor PQRSTU, each side of length L, bent as shown in the figure, carries a current i and is placed in a uniform magnetic induction B directed parallel to the positive Y-axis. The force experience by the wire and its direction are

" ["question_id"]=> string(4) "2840" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11245" ["question_id"]=> string(4) "2840" ["opt_desc"]=> string(60) "

2iBL directed along the negative Z-axis

" } [1]=> array(3) { ["option_id"]=> string(5) "11246" ["question_id"]=> string(4) "2840" ["opt_desc"]=> string(69) "

5iBL directed along the positive Z-axis

" } [2]=> array(3) { ["option_id"]=> string(5) "11247" ["question_id"]=> string(4) "2840" ["opt_desc"]=> string(66) "

 iBL direction along the positive Z-axis

" } [3]=> array(3) { ["option_id"]=> string(5) "11248" ["question_id"]=> string(4) "2840" ["opt_desc"]=> string(60) "

2iBL directed along the positive Z-axis

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2880" ["question_id"]=> string(4) "2840" ["option_id"]=> string(5) "11247" } } } [58]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "206" ["ques_text"]=> string(3080) "

Three long, straight and parallel wires carrying currents are arranged as shown in figure. The force experienced by 10 cm length of wire Q is

 

" ["question_id"]=> string(4) "2845" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11265" ["question_id"]=> string(4) "2845" ["opt_desc"]=> string(72) "

1.4×10–4 N towards the right

" } [1]=> array(3) { ["option_id"]=> string(5) "11266" ["question_id"]=> string(4) "2845" ["opt_desc"]=> string(71) "

1.4×10–4 N towards the left

" } [2]=> array(3) { ["option_id"]=> string(5) "11267" ["question_id"]=> string(4) "2845" ["opt_desc"]=> string(69) "

2.6 × 10–4 N to the right

" } [3]=> array(3) { ["option_id"]=> string(5) "11268" ["question_id"]=> string(4) "2845" ["opt_desc"]=> string(66) "

2.6×10–4 N to the left

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2885" ["question_id"]=> string(4) "2845" ["option_id"]=> string(5) "11265" } } } [59]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "206" ["ques_text"]=> string(3149) "

A square coil of N turns (with length of each side equal L) carrying current i is placed in a uniform magnetic field B=B0j^ as shown in figure. What is the torque

" ["question_id"]=> string(4) "2849" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11281" ["question_id"]=> string(4) "2849" ["opt_desc"]=> string(217) "

+B0NiL2k^

 

" } [1]=> array(3) { ["option_id"]=> string(5) "11282" ["question_id"]=> string(4) "2849" ["opt_desc"]=> string(205) "

B0NiL2k^

" } [2]=> array(3) { ["option_id"]=> string(5) "11283" ["question_id"]=> string(4) "2849" ["opt_desc"]=> string(199) "

+B0NiL2j^

" } [3]=> array(3) { ["option_id"]=> string(5) "11284" ["question_id"]=> string(4) "2849" ["opt_desc"]=> string(205) "

B0NiL2j^

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2889" ["question_id"]=> string(4) "2849" ["option_id"]=> string(5) "11282" } } } [60]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "206" ["ques_text"]=> string(8041) "

A wire abc is carrying current i. It is bent as shown in fig and is placed in a uniform magnetic field of magnetic induction B. Length ab = l and abc = 45o. The ratio of force on ab and on bc is

" ["question_id"]=> string(4) "2854" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11301" ["question_id"]=> string(4) "2854" ["opt_desc"]=> string(118) "

12

" } [1]=> array(3) { ["option_id"]=> string(5) "11302" ["question_id"]=> string(4) "2854" ["opt_desc"]=> string(93) "

2

" } [2]=> array(3) { ["option_id"]=> string(5) "11303" ["question_id"]=> string(4) "2854" ["opt_desc"]=> string(13) "

1

" } [3]=> array(3) { ["option_id"]=> string(5) "11304" ["question_id"]=> string(4) "2854" ["opt_desc"]=> string(81) "

2/3           

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2894" ["question_id"]=> string(4) "2854" ["option_id"]=> string(5) "11303" } } } [61]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "209" ["ques_text"]=> string(11268) "

A circular loop of radius a, carrying a current i, is placed in a two-dimensional magnetic field. The centre of the loop coincides with the centre of the field. The strength of the magnetic field at the periphery of the loop is B. Find the magnetic force on the wire

" ["question_id"]=> string(4) "2875" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11385" ["question_id"]=> string(4) "2875" ["opt_desc"]=> string(19) "

πiaB

" } [1]=> array(3) { ["option_id"]=> string(5) "11386" ["question_id"]=> string(4) "2875" ["opt_desc"]=> string(20) "

4πiaB

" } [2]=> array(3) { ["option_id"]=> string(5) "11387" ["question_id"]=> string(4) "2875" ["opt_desc"]=> string(16) "

Zero

" } [3]=> array(3) { ["option_id"]=> string(5) "11388" ["question_id"]=> string(4) "2875" ["opt_desc"]=> string(20) "

2πiaB

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2915" ["question_id"]=> string(4) "2875" ["option_id"]=> string(5) "11388" } } } [62]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "209" ["ques_text"]=> string(5623) "

 Find out the magnitude of the magnetic field at point P due to following current distribution

" ["question_id"]=> string(4) "2876" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11389" ["question_id"]=> string(4) "2876" ["opt_desc"]=> string(50) "

μo ia/ πr2

" } [1]=> array(3) { ["option_id"]=> string(5) "11390" ["question_id"]=> string(4) "2876" ["opt_desc"]=> string(50) "

μo ia2/ πr

" } [2]=> array(3) { ["option_id"]=> string(5) "11391" ["question_id"]=> string(4) "2876" ["opt_desc"]=> string(51) "

μo ia/ 2πr2

" } [3]=> array(3) { ["option_id"]=> string(5) "11392" ["question_id"]=> string(4) "2876" ["opt_desc"]=> string(57) "

 2μo ia/ πr2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2916" ["question_id"]=> string(4) "2876" ["option_id"]=> string(5) "11389" } } } [63]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "209" ["ques_text"]=> string(5504) "

 For the solenoid shown in figure. The magnetic field at point P is

" ["question_id"]=> string(4) "2877" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11393" ["question_id"]=> string(4) "2877" ["opt_desc"]=> string(229) "

μ0ni4(3+1)

" } [1]=> array(3) { ["option_id"]=> string(5) "11394" ["question_id"]=> string(4) "2877" ["opt_desc"]=> string(189) "

3μ0ni4

" } [2]=> array(3) { ["option_id"]=> string(5) "11395" ["question_id"]=> string(4) "2877" ["opt_desc"]=> string(229) "

μ0ni2(3+1)

" } [3]=> array(3) { ["option_id"]=> string(5) "11396" ["question_id"]=> string(4) "2877" ["opt_desc"]=> string(235) "

μ0ni4(31)

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2917" ["question_id"]=> string(4) "2877" ["option_id"]=> string(5) "11393" } } } [64]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "210" ["ques_text"]=> string(339) "

A particle with 10–11 coulomb of charge and 10–7 kg mass is moving with a velocity of 108 m/s along the y-axis. A uniform static magnetic field B = 0.5 Tesla is acting along the x-direction. The force on the particle is

" ["question_id"]=> string(4) "2899" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11481" ["question_id"]=> string(4) "2899" ["opt_desc"]=> string(153) "

5 ´ 10–11 N along i^

" } [1]=> array(3) { ["option_id"]=> string(5) "11482" ["question_id"]=> string(4) "2899" ["opt_desc"]=> string(145) "

5 ´ 103 N along k^

" } [2]=> array(3) { ["option_id"]=> string(5) "11483" ["question_id"]=> string(4) "2899" ["opt_desc"]=> string(169) "

5 ´ 10–11 N along j^

" } [3]=> array(3) { ["option_id"]=> string(5) "11484" ["question_id"]=> string(4) "2899" ["opt_desc"]=> string(168) "

5 ´ 10–4 N along k^

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2939" ["question_id"]=> string(4) "2899" ["option_id"]=> string(5) "11484" } } } [65]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "211" ["ques_text"]=> string(15034) "

Figure shows the cress sectional view of the hollow cylindrical conductor with inner radius 'R' and outer radius '2R', cylinder carrying uniformly distributed current along it's axis. The magnetic induction at point 'P' at a distance 3R/2 from the axis of the cylinder will be

" ["question_id"]=> string(4) "2904" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11501" ["question_id"]=> string(4) "2904" ["opt_desc"]=> string(16) "

Zero

" } [1]=> array(3) { ["option_id"]=> string(5) "11502" ["question_id"]=> string(4) "2904" ["opt_desc"]=> string(225) "

5μ0i72πR

" } [2]=> array(3) { ["option_id"]=> string(5) "11503" ["question_id"]=> string(4) "2904" ["opt_desc"]=> string(225) "

7μ0i18πR

" } [3]=> array(3) { ["option_id"]=> string(5) "11504" ["question_id"]=> string(4) "2904" ["opt_desc"]=> string(225) "

5μ0i36πR

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2944" ["question_id"]=> string(4) "2904" ["option_id"]=> string(5) "11504" } } } [66]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "211" ["ques_text"]=> string(2833) "

The magnetic field is downward perpendicular to the plane of the paper and a few charged particles are projected in it. Which of the following is true

" ["question_id"]=> string(4) "2906" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11509" ["question_id"]=> string(4) "2906" ["opt_desc"]=> string(59) "

A represents proton and B and electron

" } [1]=> array(3) { ["option_id"]=> string(5) "11510" ["question_id"]=> string(4) "2906" ["opt_desc"]=> string(119) "

Both A and B represent protons but velocity of A is more than that of B

" } [2]=> array(3) { ["option_id"]=> string(5) "11511" ["question_id"]=> string(4) "2906" ["opt_desc"]=> string(120) "

Both A and B represents protons but velocity of B is more than that of A

" } [3]=> array(3) { ["option_id"]=> string(5) "11512" ["question_id"]=> string(4) "2906" ["opt_desc"]=> string(122) "

Both A and B represent electrons, but velocity of B is more than that of A

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2946" ["question_id"]=> string(4) "2906" ["option_id"]=> string(5) "11511" } } } [67]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "211" ["ques_text"]=> string(6108) "

A conductor PQRSTU, each side of length L, bent as shown in the figure, carries a current i and is placed in a uniform magnetic induction B directed parallel to the positive Y-axis. The force experience by the wire and its direction are

" ["question_id"]=> string(4) "2909" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11521" ["question_id"]=> string(4) "2909" ["opt_desc"]=> string(60) "

2iBL directed along the negative Z-axis

" } [1]=> array(3) { ["option_id"]=> string(5) "11522" ["question_id"]=> string(4) "2909" ["opt_desc"]=> string(69) "

5iBL directed along the positive Z-axis

" } [2]=> array(3) { ["option_id"]=> string(5) "11523" ["question_id"]=> string(4) "2909" ["opt_desc"]=> string(60) "

iBL direction along the positive Z-axis

" } [3]=> array(3) { ["option_id"]=> string(5) "11524" ["question_id"]=> string(4) "2909" ["opt_desc"]=> string(60) "

2iBL directed along the positive Z-axis

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2949" ["question_id"]=> string(4) "2909" ["option_id"]=> string(5) "11523" } } } [68]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "211" ["ques_text"]=> string(7270) "

A wire abc is carrying current i. It is bent as shown in fig and is placed in a uniform magnetic field of magnetic induction B. Length ab = l and Ð abc = 45o. The ratio of force on ab and on bc is

" ["question_id"]=> string(4) "2910" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11525" ["question_id"]=> string(4) "2910" ["opt_desc"]=> string(118) "

12

" } [1]=> array(3) { ["option_id"]=> string(5) "11526" ["question_id"]=> string(4) "2910" ["opt_desc"]=> string(93) "

2

" } [2]=> array(3) { ["option_id"]=> string(5) "11527" ["question_id"]=> string(4) "2910" ["opt_desc"]=> string(13) "

1

" } [3]=> array(3) { ["option_id"]=> string(5) "11528" ["question_id"]=> string(4) "2910" ["opt_desc"]=> string(15) "

2/3

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2950" ["question_id"]=> string(4) "2910" ["option_id"]=> string(5) "11527" } } } [69]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "211" ["ques_text"]=> string(10257) "

An equilateral triangle of side 'a' carries a current i then find out the magnetic field at point P which is vertex of triangle

" ["question_id"]=> string(4) "2911" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11529" ["question_id"]=> string(4) "2911" ["opt_desc"]=> string(229) "

μoi23πa

" } [1]=> array(3) { ["option_id"]=> string(5) "11530" ["question_id"]=> string(4) "2911" ["opt_desc"]=> string(229) "

μoi23πa

" } [2]=> array(3) { ["option_id"]=> string(5) "11531" ["question_id"]=> string(4) "2911" ["opt_desc"]=> string(216) "

23μoiπa

" } [3]=> array(3) { ["option_id"]=> string(5) "11532" ["question_id"]=> string(4) "2911" ["opt_desc"]=> string(16) "

Zero

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2951" ["question_id"]=> string(4) "2911" ["option_id"]=> string(5) "11530" } } } [70]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "211" ["ques_text"]=> string(1879) "

An infinitely long, straight conductor AB is fixed and a current is passed through it. Another movable straight wire CD of finite length and carrying current is held perpendicular to it and released. Neglect weight of the wire

" ["question_id"]=> string(4) "2915" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11545" ["question_id"]=> string(4) "2915" ["opt_desc"]=> string(68) "

The rod CD will move upwards parallel to itself

" } [1]=> array(3) { ["option_id"]=> string(5) "11546" ["question_id"]=> string(4) "2915" ["opt_desc"]=> string(69) "

The rod CD will move downward parallel to itself

" } [2]=> array(3) { ["option_id"]=> string(5) "11547" ["question_id"]=> string(4) "2915" ["opt_desc"]=> string(84) "

The rod CD will move upward and turn clockwise at the same time

" } [3]=> array(3) { ["option_id"]=> string(5) "11548" ["question_id"]=> string(4) "2915" ["opt_desc"]=> string(96) "

The rod CD will move upward and turn anti –clockwise at the same time

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2955" ["question_id"]=> string(4) "2915" ["option_id"]=> string(5) "11547" } } } [71]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "211" ["ques_text"]=> string(10555) "

Find magnetic field at centre O in each of each of the following figure

" ["question_id"]=> string(4) "2917" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11553" ["question_id"]=> string(4) "2917" ["opt_desc"]=> string(198) "

μoi2r

" } [1]=> array(3) { ["option_id"]=> string(5) "11554" ["question_id"]=> string(4) "2917" ["opt_desc"]=> string(214) "

μoi2r

" } [2]=> array(3) { ["option_id"]=> string(5) "11555" ["question_id"]=> string(4) "2917" ["opt_desc"]=> string(224) "

3μoi8r

" } [3]=> array(3) { ["option_id"]=> string(5) "11556" ["question_id"]=> string(4) "2917" ["opt_desc"]=> string(208) "

3μoi8r

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2957" ["question_id"]=> string(4) "2917" ["option_id"]=> string(5) "11553" } } } [72]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "212" ["ques_text"]=> string(11595) "

Find magnetic field at centre O in each of the following figure

" ["question_id"]=> string(4) "2920" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11565" ["question_id"]=> string(4) "2920" ["opt_desc"]=> string(200) "

μoir

" } [1]=> array(3) { ["option_id"]=> string(5) "11566" ["question_id"]=> string(4) "2920" ["opt_desc"]=> string(198) "

μoi2r

" } [2]=> array(3) { ["option_id"]=> string(5) "11567" ["question_id"]=> string(4) "2920" ["opt_desc"]=> string(223) "

μoi4r

" } [3]=> array(3) { ["option_id"]=> string(5) "11568" ["question_id"]=> string(4) "2920" ["opt_desc"]=> string(207) "

μoi4r

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2960" ["question_id"]=> string(4) "2920" ["option_id"]=> string(5) "11567" } } } [73]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "213" ["ques_text"]=> string(366) "

Electrons move at right angles to a magnetic field of 1.5 x 10-2Tesla with a speed of 6 x 1027m/s. If the specific charge of the electron is 1.7 x 1011 Coul/kg. The radius of the circular path will be            [BHU 2003]

" ["question_id"]=> string(4) "2931" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11609" ["question_id"]=> string(4) "2931" ["opt_desc"]=> string(27) "

2.9 cm

" } [1]=> array(3) { ["option_id"]=> string(5) "11610" ["question_id"]=> string(4) "2931" ["opt_desc"]=> string(27) "

3.9 cm

" } [2]=> array(3) { ["option_id"]=> string(5) "11611" ["question_id"]=> string(4) "2931" ["opt_desc"]=> string(28) "

2.35 cm

" } [3]=> array(3) { ["option_id"]=> string(5) "11612" ["question_id"]=> string(4) "2931" ["opt_desc"]=> string(25) "

3 cm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2971" ["question_id"]=> string(4) "2931" ["option_id"]=> string(5) "11611" } } } [74]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "214" ["ques_text"]=> string(5511) "

Two identical bar magnets with a length 10 cm and weight 50 gm – weight are arranged freely with their like poles facing in a arranged vertical glass tube. The upper magnet hangs in the air above the lower one so that the distance between the nearest pole of the magnet is 3mm. Pole strength of the poles of each magnet will be

" ["question_id"]=> string(4) "2938" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11637" ["question_id"]=> string(4) "2938" ["opt_desc"]=> string(42) "

6.64 amp x m

" } [1]=> array(3) { ["option_id"]=> string(5) "11638" ["question_id"]=> string(4) "2938" ["opt_desc"]=> string(39) "

2 amp x m

" } [2]=> array(3) { ["option_id"]=> string(5) "11639" ["question_id"]=> string(4) "2938" ["opt_desc"]=> string(43) "

10.25 amp x m

" } [3]=> array(3) { ["option_id"]=> string(5) "11640" ["question_id"]=> string(4) "2938" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2978" ["question_id"]=> string(4) "2938" ["option_id"]=> string(5) "11637" } } } [75]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "214" ["ques_text"]=> string(4944) "

Earth's magnetic field may be supposed to be due to a small bar magnet located at the centre of the earth. If the magnetic field at a point on the magnetic equator is 0.3×10–4 T. Magnet moment of bar magnet is

" ["question_id"]=> string(4) "2940" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11645" ["question_id"]=> string(4) "2940" ["opt_desc"]=> string(58) "

7.8 x 108 amp x m2 

" } [1]=> array(3) { ["option_id"]=> string(5) "11646" ["question_id"]=> string(4) "2940" ["opt_desc"]=> string(53) "

7.8 x 1022 amp x m2

" } [2]=> array(3) { ["option_id"]=> string(5) "11647" ["question_id"]=> string(4) "2940" ["opt_desc"]=> string(53) "

6.4 x 1022 amp x m2

" } [3]=> array(3) { ["option_id"]=> string(5) "11648" ["question_id"]=> string(4) "2940" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2980" ["question_id"]=> string(4) "2940" ["option_id"]=> string(5) "11646" } } } [76]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "215" ["ques_text"]=> string(3394) "

 A short bar magnet is placed with its south pole towards geographical north. The neutral points are situated at a distance of 20 cm from the centre of the magnet. If BH=0.3 x 10-4 wb/m2 then the magnetic moment of the magnet is

" ["question_id"]=> string(4) "2955" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11705" ["question_id"]=> string(4) "2955" ["opt_desc"]=> string(68) "

9000 ab- amp x cm2

" } [1]=> array(3) { ["option_id"]=> string(5) "11706" ["question_id"]=> string(4) "2955" ["opt_desc"]=> string(45) "

900 ab-amp x cm2 

" } [2]=> array(3) { ["option_id"]=> string(5) "11707" ["question_id"]=> string(4) "2955" ["opt_desc"]=> string(40) "

1200 ab-amp x cm2

" } [3]=> array(3) { ["option_id"]=> string(5) "11708" ["question_id"]=> string(4) "2955" ["opt_desc"]=> string(39) "

225 ab-amp x cm2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2995" ["question_id"]=> string(4) "2955" ["option_id"]=> string(5) "11707" } } } [77]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "217" ["ques_text"]=> string(65) "

If 540 is divided by 11, then remainder is

" ["question_id"]=> string(4) "2987" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11833" ["question_id"]=> string(4) "2987" ["opt_desc"]=> string(13) "

2

" } [1]=> array(3) { ["option_id"]=> string(5) "11834" ["question_id"]=> string(4) "2987" ["opt_desc"]=> string(13) "

3

" } [2]=> array(3) { ["option_id"]=> string(5) "11835" ["question_id"]=> string(4) "2987" ["opt_desc"]=> string(13) "

5

" } [3]=> array(3) { ["option_id"]=> string(5) "11836" ["question_id"]=> string(4) "2987" ["opt_desc"]=> string(14) "

1s

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3027" ["question_id"]=> string(4) "2987" ["option_id"]=> string(5) "11836" } } } [78]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "217" ["ques_text"]=> string(124) "

The digits at unit’s place in the number 171995 + 111995 – 71995 is

" ["question_id"]=> string(4) "2999" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11881" ["question_id"]=> string(4) "2999" ["opt_desc"]=> string(13) "

0

" } [1]=> array(3) { ["option_id"]=> string(5) "11882" ["question_id"]=> string(4) "2999" ["opt_desc"]=> string(13) "

1

" } [2]=> array(3) { ["option_id"]=> string(5) "11883" ["question_id"]=> string(4) "2999" ["opt_desc"]=> string(13) "

2

" } [3]=> array(3) { ["option_id"]=> string(5) "11884" ["question_id"]=> string(4) "2999" ["opt_desc"]=> string(13) "

3

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3039" ["question_id"]=> string(4) "2999" ["option_id"]=> string(5) "11882" } } } [79]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "220" ["ques_text"]=> string(5076) "

Earth's magnetic field may be supposed to be due to a small bar magnet located at the centre of the earth. If the magnetic field at a point on the magnetic equator is 0.3×10–4 T. Magnet moment of bar magnet is

" ["question_id"]=> string(4) "3007" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "11913" ["question_id"]=> string(4) "3007" ["opt_desc"]=> string(52) "

7.8 x 108 amp x m2

" } [1]=> array(3) { ["option_id"]=> string(5) "11914" ["question_id"]=> string(4) "3007" ["opt_desc"]=> string(53) "

7.8 x 1022 amp x m2

" } [2]=> array(3) { ["option_id"]=> string(5) "11915" ["question_id"]=> string(4) "3007" ["opt_desc"]=> string(53) "

6.4 x 1022 amp x m2

" } [3]=> array(3) { ["option_id"]=> string(5) "11916" ["question_id"]=> string(4) "3007" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3047" ["question_id"]=> string(4) "3007" ["option_id"]=> string(5) "11914" } } } [80]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "219" ["ques_text"]=> string(166) "

The points scored by basket ball team in a series of matches are as follows:

15, 3, 8, 10, 22, 5, 27, 11, 12, 19, 18, 21, 13, 14. Its median is

" ["question_id"]=> string(4) "3033" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12017" ["question_id"]=> string(4) "3033" ["opt_desc"]=> string(14) "

13

" } [1]=> array(3) { ["option_id"]=> string(5) "12018" ["question_id"]=> string(4) "3033" ["opt_desc"]=> string(16) "

13.4

" } [2]=> array(3) { ["option_id"]=> string(5) "12019" ["question_id"]=> string(4) "3033" ["opt_desc"]=> string(16) "

13.5

" } [3]=> array(3) { ["option_id"]=> string(5) "12020" ["question_id"]=> string(4) "3033" ["opt_desc"]=> string(16) "

14.5

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3073" ["question_id"]=> string(4) "3033" ["option_id"]=> string(5) "12019" } } } [81]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "221" ["ques_text"]=> string(2896) "

A short bar magnet is placed with its south pole towards geographical north. The neutral points are situated at a distance of 20 cm from the centre of the magnet. If BH=0.3 x 10-4 wb/m2 then the magnetic moment of the magnet is

" ["question_id"]=> string(4) "3045" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12065" ["question_id"]=> string(4) "3045" ["opt_desc"]=> string(68) "

9000 ab- amp x cm2

" } [1]=> array(3) { ["option_id"]=> string(5) "12066" ["question_id"]=> string(4) "3045" ["opt_desc"]=> string(39) "

900 ab-amp x cm2

" } [2]=> array(3) { ["option_id"]=> string(5) "12067" ["question_id"]=> string(4) "3045" ["opt_desc"]=> string(40) "

1200 ab-amp x cm2

" } [3]=> array(3) { ["option_id"]=> string(5) "12068" ["question_id"]=> string(4) "3045" ["opt_desc"]=> string(39) "

225 ab-amp x cm2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3085" ["question_id"]=> string(4) "3045" ["option_id"]=> string(5) "12067" } } } [82]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "224" ["ques_text"]=> string(2713) "

An ideal gas is taken around ABCA as shown in the above P-V diagram. The work done during a cycle is

" ["question_id"]=> string(4) "3082" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12213" ["question_id"]=> string(4) "3082" ["opt_desc"]=> string(24) "

2PV

" } [1]=> array(3) { ["option_id"]=> string(5) "12214" ["question_id"]=> string(4) "3082" ["opt_desc"]=> string(23) "

PV

" } [2]=> array(3) { ["option_id"]=> string(5) "12215" ["question_id"]=> string(4) "3082" ["opt_desc"]=> string(26) "

1/2PV

" } [3]=> array(3) { ["option_id"]=> string(5) "12216" ["question_id"]=> string(4) "3082" ["opt_desc"]=> string(16) "

Zero

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3122" ["question_id"]=> string(4) "3082" ["option_id"]=> string(5) "12213" } } } [83]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "224" ["ques_text"]=> string(148) "

If 150 J of heat is added to a system and the work done by the system is 110 J, then change in internal energy will be

" ["question_id"]=> string(4) "3085" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12225" ["question_id"]=> string(4) "3085" ["opt_desc"]=> string(26) "

260 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12226" ["question_id"]=> string(4) "3085" ["opt_desc"]=> string(26) "

150 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12227" ["question_id"]=> string(4) "3085" ["opt_desc"]=> string(26) "

110 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12228" ["question_id"]=> string(4) "3085" ["opt_desc"]=> string(25) "

40 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3125" ["question_id"]=> string(4) "3085" ["option_id"]=> string(5) "12228" } } } [84]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "224" ["ques_text"]=> string(287) "

One mole of Q2 gas having a volume equal to 22.4 litres at 0°C and 1 atmospheric pressure in compressed isothermally so that its volume reduces to 11.2 litres. The work done in this process is [MP PET 1993; BVP 2003]

" ["question_id"]=> string(4) "3086" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12229" ["question_id"]=> string(4) "3086" ["opt_desc"]=> string(29) "

1672.5 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12230" ["question_id"]=> string(4) "3086" ["opt_desc"]=> string(27) "

1728 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12231" ["question_id"]=> string(4) "3086" ["opt_desc"]=> string(35) "

– 1728 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12232" ["question_id"]=> string(4) "3086" ["opt_desc"]=> string(36) "

–1572.5 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3126" ["question_id"]=> string(4) "3086" ["option_id"]=> string(5) "12232" } } } [85]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "225" ["ques_text"]=> string(2898) "

In pressure-volume diagram given below, the isochoric, isothermal, and isobaric parts respectively, are

" ["question_id"]=> string(4) "3098" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12277" ["question_id"]=> string(4) "3098" ["opt_desc"]=> string(49) "

BA, AD, DC

" } [1]=> array(3) { ["option_id"]=> string(5) "12278" ["question_id"]=> string(4) "3098" ["opt_desc"]=> string(55) "

 DC, CB, BA

" } [2]=> array(3) { ["option_id"]=> string(5) "12279" ["question_id"]=> string(4) "3098" ["opt_desc"]=> string(49) "

AB, BC, CD

" } [3]=> array(3) { ["option_id"]=> string(5) "12280" ["question_id"]=> string(4) "3098" ["opt_desc"]=> string(49) "

CD, DA, AB

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3138" ["question_id"]=> string(4) "3098" ["option_id"]=> string(5) "12280" } } } [86]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "226" ["ques_text"]=> string(2443) "

The P-V diagram of a system undergoing thermodynamic transformation is shown in figure. The work done on the system in going from A ® B ® C is 50 J and 20 cal heat is given to the system. The change in internal energy between A and C is

" ["question_id"]=> string(4) "3119" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12361" ["question_id"]=> string(4) "3119" ["opt_desc"]=> string(25) "

34 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12362" ["question_id"]=> string(4) "3119" ["opt_desc"]=> string(25) "

70 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12363" ["question_id"]=> string(4) "3119" ["opt_desc"]=> string(25) "

84 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12364" ["question_id"]=> string(4) "3119" ["opt_desc"]=> string(26) "

134 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3159" ["question_id"]=> string(4) "3119" ["option_id"]=> string(5) "12364" } } } [87]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "226" ["ques_text"]=> string(2114) "

A cyclic process ABCA is shown in the V-T diagram. Process on the P-V diagram is

" ["question_id"]=> string(4) "3124" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12381" ["question_id"]=> string(4) "3124" ["opt_desc"]=> string(1863) "

" } [1]=> array(3) { ["option_id"]=> string(5) "12382" ["question_id"]=> string(4) "3124" ["opt_desc"]=> string(2167) "

" } [2]=> array(3) { ["option_id"]=> string(5) "12383" ["question_id"]=> string(4) "3124" ["opt_desc"]=> string(2467) "

" } [3]=> array(3) { ["option_id"]=> string(5) "12384" ["question_id"]=> string(4) "3124" ["opt_desc"]=> string(2279) "

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3164" ["question_id"]=> string(4) "3124" ["option_id"]=> string(5) "12383" } } } [88]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "228" ["ques_text"]=> string(3639) "

The P-V diagram shows seven curved paths (connected by vertical paths) that can be followed by a gas. Which two of them should be parts of a closed cycle if the net work done by the gas is to be at its maximum value

" ["question_id"]=> string(4) "3131" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12409" ["question_id"]=> string(4) "3131" ["opt_desc"]=> string(23) "

ac

" } [1]=> array(3) { ["option_id"]=> string(5) "12410" ["question_id"]=> string(4) "3131" ["opt_desc"]=> string(23) "

cg

" } [2]=> array(3) { ["option_id"]=> string(5) "12411" ["question_id"]=> string(4) "3131" ["opt_desc"]=> string(23) "

af

" } [3]=> array(3) { ["option_id"]=> string(5) "12412" ["question_id"]=> string(4) "3131" ["opt_desc"]=> string(23) "

cd

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3171" ["question_id"]=> string(4) "3131" ["option_id"]=> string(5) "12411" } } } [89]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "228" ["ques_text"]=> string(3708) "

An ideal gas of mass m in a state A goes to another state B via three different processes as shown in figure. If Q1, Q2, and Q3 denote the heat absorbed by the gas along the three paths, then                                     [MP PET 1992]

" ["question_id"]=> string(4) "3132" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12413" ["question_id"]=> string(4) "3132" ["opt_desc"]=> string(59) "

Q1<Q2<Q3

" } [1]=> array(3) { ["option_id"]=> string(5) "12414" ["question_id"]=> string(4) "3132" ["opt_desc"]=> string(56) "

Q1<Q2=Q3

" } [2]=> array(3) { ["option_id"]=> string(5) "12415" ["question_id"]=> string(4) "3132" ["opt_desc"]=> string(56) "

Q1=Q2<Q3

" } [3]=> array(3) { ["option_id"]=> string(5) "12416" ["question_id"]=> string(4) "3132" ["opt_desc"]=> string(59) "

Q1>Q2>Q3

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3172" ["question_id"]=> string(4) "3132" ["option_id"]=> string(5) "12413" } } } [90]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "228" ["ques_text"]=> string(152) "

110 J of heat is added to a gaseous system, whose internal energy change is 40 J, then the amount of external work done is

" ["question_id"]=> string(4) "3135" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12425" ["question_id"]=> string(4) "3135" ["opt_desc"]=> string(26) "

150 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12426" ["question_id"]=> string(4) "3135" ["opt_desc"]=> string(25) "

70 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12427" ["question_id"]=> string(4) "3135" ["opt_desc"]=> string(26) "

110 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12428" ["question_id"]=> string(4) "3135" ["opt_desc"]=> string(25) "

40 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3175" ["question_id"]=> string(4) "3135" ["option_id"]=> string(5) "12426" } } } [91]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "229" ["ques_text"]=> string(2471) "

A thermodynamic system is taken through the cycle PQRSP process. The net work done by the system is

" ["question_id"]=> string(4) "3151" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12489" ["question_id"]=> string(4) "3151" ["opt_desc"]=> string(25) "

20 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12490" ["question_id"]=> string(4) "3151" ["opt_desc"]=> string(39) "

 – 20 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12491" ["question_id"]=> string(4) "3151" ["opt_desc"]=> string(26) "

400 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12492" ["question_id"]=> string(4) "3151" ["opt_desc"]=> string(34) "

– 374 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3191" ["question_id"]=> string(4) "3151" ["option_id"]=> string(5) "12490" } } } [92]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "230" ["ques_text"]=> string(4381) "

Four curves A, B, C and D are drawn in the adjoining figure for a given amount of gas. The curves which represent adiabatic and isothermal changes are

" ["question_id"]=> string(4) "3158" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12517" ["question_id"]=> string(4) "3158" ["opt_desc"]=> string(50) "

C and D respectively

" } [1]=> array(3) { ["option_id"]=> string(5) "12518" ["question_id"]=> string(4) "3158" ["opt_desc"]=> string(50) "

D and C respectively

" } [2]=> array(3) { ["option_id"]=> string(5) "12519" ["question_id"]=> string(4) "3158" ["opt_desc"]=> string(50) "

A and B respectively

" } [3]=> array(3) { ["option_id"]=> string(5) "12520" ["question_id"]=> string(4) "3158" ["opt_desc"]=> string(50) "

B and A respectively

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3198" ["question_id"]=> string(4) "3158" ["option_id"]=> string(5) "12519" } } } [93]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "230" ["ques_text"]=> string(1850) "

A cyclic process ABCA is shown in the V-T diagram. Process on the P-V diagram is

" ["question_id"]=> string(4) "3166" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12549" ["question_id"]=> string(4) "3166" ["opt_desc"]=> string(1883) "

" } [1]=> array(3) { ["option_id"]=> string(5) "12550" ["question_id"]=> string(4) "3166" ["opt_desc"]=> string(2067) "

" } [2]=> array(3) { ["option_id"]=> string(5) "12551" ["question_id"]=> string(4) "3166" ["opt_desc"]=> string(2631) "

" } [3]=> array(3) { ["option_id"]=> string(5) "12552" ["question_id"]=> string(4) "3166" ["opt_desc"]=> string(2315) "

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3206" ["question_id"]=> string(4) "3166" ["option_id"]=> string(5) "12551" } } } [94]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "231" ["ques_text"]=> string(154) "

 If 150 J of heat is added to a system and the work done by the system is 110 J, then change in internal energy will be

" ["question_id"]=> string(4) "3174" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12581" ["question_id"]=> string(4) "3174" ["opt_desc"]=> string(26) "

260 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12582" ["question_id"]=> string(4) "3174" ["opt_desc"]=> string(26) "

150 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12583" ["question_id"]=> string(4) "3174" ["opt_desc"]=> string(26) "

110 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12584" ["question_id"]=> string(4) "3174" ["opt_desc"]=> string(25) "

40 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3214" ["question_id"]=> string(4) "3174" ["option_id"]=> string(5) "12584" } } } [95]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "231" ["ques_text"]=> string(3639) "

The P-V diagram shows seven curved paths (connected by vertical paths) that can be followed by a gas. Which two of them should be parts of a closed cycle if the net work done by the gas is to be at its maximum value

" ["question_id"]=> string(4) "3176" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12589" ["question_id"]=> string(4) "3176" ["opt_desc"]=> string(23) "

ac

" } [1]=> array(3) { ["option_id"]=> string(5) "12590" ["question_id"]=> string(4) "3176" ["opt_desc"]=> string(23) "

cg

" } [2]=> array(3) { ["option_id"]=> string(5) "12591" ["question_id"]=> string(4) "3176" ["opt_desc"]=> string(23) "

af

" } [3]=> array(3) { ["option_id"]=> string(5) "12592" ["question_id"]=> string(4) "3176" ["opt_desc"]=> string(23) "

cd

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3216" ["question_id"]=> string(4) "3176" ["option_id"]=> string(5) "12591" } } } [96]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "231" ["ques_text"]=> string(152) "

110 J of heat is added to a gaseous system, whose internal energy change is 40 J, then the amount of external work done is

" ["question_id"]=> string(4) "3177" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12593" ["question_id"]=> string(4) "3177" ["opt_desc"]=> string(26) "

150 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12594" ["question_id"]=> string(4) "3177" ["opt_desc"]=> string(25) "

70 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12595" ["question_id"]=> string(4) "3177" ["opt_desc"]=> string(26) "

110 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12596" ["question_id"]=> string(4) "3177" ["opt_desc"]=> string(25) "

40 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3217" ["question_id"]=> string(4) "3177" ["option_id"]=> string(5) "12594" } } } [97]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "231" ["ques_text"]=> string(2165) "

P-V plots for two gases during adiabatic process are shown in the figure. Plots 1 and 2 should correspond respectively to

" ["question_id"]=> string(4) "3179" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12601" ["question_id"]=> string(4) "3179" ["opt_desc"]=> string(41) "

He and O2

" } [1]=> array(3) { ["option_id"]=> string(5) "12602" ["question_id"]=> string(4) "3179" ["opt_desc"]=> string(41) "

02 and He

" } [2]=> array(3) { ["option_id"]=> string(5) "12603" ["question_id"]=> string(4) "3179" ["opt_desc"]=> string(39) "

He and Ar

" } [3]=> array(3) { ["option_id"]=> string(5) "12604" ["question_id"]=> string(4) "3179" ["opt_desc"]=> string(43) "

02 and N2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3219" ["question_id"]=> string(4) "3179" ["option_id"]=> string(5) "12602" } } } [98]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "232" ["ques_text"]=> string(246) "

One mole of Q2 gas having a volume equal to 22.4 litres at 0°C and 1 atmospheric pressure in compressed isothermally so that its volume reduces to 11.2 litres. The work done in this process is

" ["question_id"]=> string(4) "3189" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12641" ["question_id"]=> string(4) "3189" ["opt_desc"]=> string(29) "

1672.5 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12642" ["question_id"]=> string(4) "3189" ["opt_desc"]=> string(27) "

1728 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12643" ["question_id"]=> string(4) "3189" ["opt_desc"]=> string(35) "

– 1728 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12644" ["question_id"]=> string(4) "3189" ["opt_desc"]=> string(42) "

 –1572.5 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3229" ["question_id"]=> string(4) "3189" ["option_id"]=> string(5) "12644" } } } [99]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "239" ["ques_text"]=> string(3152) "

The adjoining figure shows graph of pressure and volume of a gas at two temperatures T1 and T2. Which of the following interferences is correct

" ["question_id"]=> string(4) "3299" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13081" ["question_id"]=> string(4) "3299" ["opt_desc"]=> string(42) "

T1>T2

" } [1]=> array(3) { ["option_id"]=> string(5) "13082" ["question_id"]=> string(4) "3299" ["opt_desc"]=> string(39) "

T1=T2

" } [2]=> array(3) { ["option_id"]=> string(5) "13083" ["question_id"]=> string(4) "3299" ["opt_desc"]=> string(42) "

T1<T2

" } [3]=> array(3) { ["option_id"]=> string(5) "13084" ["question_id"]=> string(4) "3299" ["opt_desc"]=> string(40) "

No interference can be drawn

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3339" ["question_id"]=> string(4) "3299" ["option_id"]=> string(5) "13083" } } } [100]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "241" ["ques_text"]=> string(4186) "

An experiment is carried on a fixed amount of gas at different temperatures and at high pressure such that it deviates from the ideal gas behaviour. The variation of PV/RT with P is shown in the diagram. The correct variation will correspond to                                                                           [CPMT 1988]

" ["question_id"]=> string(4) "3327" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13193" ["question_id"]=> string(4) "3327" ["opt_desc"]=> string(28) "

Curve A

" } [1]=> array(3) { ["option_id"]=> string(5) "13194" ["question_id"]=> string(4) "3327" ["opt_desc"]=> string(28) "

Curve B

" } [2]=> array(3) { ["option_id"]=> string(5) "13195" ["question_id"]=> string(4) "3327" ["opt_desc"]=> string(28) "

Curve C

" } [3]=> array(3) { ["option_id"]=> string(5) "13196" ["question_id"]=> string(4) "3327" ["opt_desc"]=> string(28) "

Curve D

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3367" ["question_id"]=> string(4) "3327" ["option_id"]=> string(5) "13194" } } } [101]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "241" ["ques_text"]=> string(6407) "

At the top of a mountain a thermometer reads 7°C and a barometer reads 70 cm of Hg. At the bottom of the mountain these read 27°C and 76 cm of Hg respectively. Comparison of density of air at the top with that of bottom is

" ["question_id"]=> string(4) "3329" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13201" ["question_id"]=> string(4) "3329" ["opt_desc"]=> string(17) "

75/76

" } [1]=> array(3) { ["option_id"]=> string(5) "13202" ["question_id"]=> string(4) "3329" ["opt_desc"]=> string(17) "

70/76

" } [2]=> array(3) { ["option_id"]=> string(5) "13203" ["question_id"]=> string(4) "3329" ["opt_desc"]=> string(17) "

76/75

" } [3]=> array(3) { ["option_id"]=> string(5) "13204" ["question_id"]=> string(4) "3329" ["opt_desc"]=> string(17) "

76/70

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3369" ["question_id"]=> string(4) "3329" ["option_id"]=> string(5) "13201" } } } [102]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "241" ["ques_text"]=> string(7791) "

Two identical glass bulbs are interconnected by a thin glass tube. A gas is filled in these bulbs at N.T.P. If one bulb is placed in ice and another bulb is placed in hot bath, then the pressure of the gas becomes 1.5 times. The temperature of hot bath will be

" ["question_id"]=> string(4) "3331" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13209" ["question_id"]=> string(4) "3331" ["opt_desc"]=> string(30) "

100°C

" } [1]=> array(3) { ["option_id"]=> string(5) "13210" ["question_id"]=> string(4) "3331" ["opt_desc"]=> string(30) "

182°C

" } [2]=> array(3) { ["option_id"]=> string(5) "13211" ["question_id"]=> string(4) "3331" ["opt_desc"]=> string(30) "

256°C

" } [3]=> array(3) { ["option_id"]=> string(5) "13212" ["question_id"]=> string(4) "3331" ["opt_desc"]=> string(30) "

546°C

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3371" ["question_id"]=> string(4) "3331" ["option_id"]=> string(5) "13212" } } } [103]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "242" ["ques_text"]=> string(4862) "

The expansion of an ideal gas of mass m at a constant pressure P is given by the straight line D. Then the expansion of the same ideal gas of mass 2m at a pressure P/ 2 is given by the straight line

" ["question_id"]=> string(4) "3335" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13225" ["question_id"]=> string(4) "3335" ["opt_desc"]=> string(13) "

E

" } [1]=> array(3) { ["option_id"]=> string(5) "13226" ["question_id"]=> string(4) "3335" ["opt_desc"]=> string(13) "

C

" } [2]=> array(3) { ["option_id"]=> string(5) "13227" ["question_id"]=> string(4) "3335" ["opt_desc"]=> string(13) "

B

" } [3]=> array(3) { ["option_id"]=> string(5) "13228" ["question_id"]=> string(4) "3335" ["opt_desc"]=> string(13) "

A

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3375" ["question_id"]=> string(4) "3335" ["option_id"]=> string(5) "13228" } } } [104]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "242" ["ques_text"]=> string(4941) "

An ideal monoatomic gas is confined in a cylinder by a spring-loaded piston if cross-section 8 x 10-3m2. Initially the gas is at 300K and occupies a volume of 2.4 x 10-3m3 and the spring is in a relaxed state. The gas is heated by a small heater coil H. The force constant of the spring is 8000 N/m, and the atmospheric pressure is 1.0 x 105Pa. The cylinder and piston are thermally insulated. The piston and the spring are massless and there is no friction between the piston and cylinder. There is no heat loss through heater coil wire leads and thermal capacity of the heater coil is negligible. With all the above assumptions, if the gas is heated by the heater until the piston moves out slowly by 0.1m, then the final temperature is

" ["question_id"]=> string(4) "3337" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13233" ["question_id"]=> string(4) "3337" ["opt_desc"]=> string(26) "

400 K

" } [1]=> array(3) { ["option_id"]=> string(5) "13234" ["question_id"]=> string(4) "3337" ["opt_desc"]=> string(26) "

800 K

" } [2]=> array(3) { ["option_id"]=> string(5) "13235" ["question_id"]=> string(4) "3337" ["opt_desc"]=> string(27) "

1200 K

" } [3]=> array(3) { ["option_id"]=> string(5) "13236" ["question_id"]=> string(4) "3337" ["opt_desc"]=> string(26) "

300 K

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3378" ["question_id"]=> string(4) "3337" ["option_id"]=> string(5) "13234" } } } [105]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "246" ["ques_text"]=> string(2741) "

Pressure versus temperature graph of an ideal gas of equal number of moles of different volumes are plotted as shown in figure. Choose the correct alternative

" ["question_id"]=> string(4) "3394" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13461" ["question_id"]=> string(4) "3394" ["opt_desc"]=> string(103) "

V1=V2, V3=V4 and V2>V3

" } [1]=> array(3) { ["option_id"]=> string(5) "13462" ["question_id"]=> string(4) "3394" ["opt_desc"]=> string(103) "

V1=V2, V3=V4 and V2<V3

" } [2]=> array(3) { ["option_id"]=> string(5) "13463" ["question_id"]=> string(4) "3394" ["opt_desc"]=> string(68) "

V1=V2= V3=V4

" } [3]=> array(3) { ["option_id"]=> string(5) "13464" ["question_id"]=> string(4) "3394" ["opt_desc"]=> string(76) "

V4>V3>V2>V1

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3436" ["question_id"]=> string(4) "3394" ["option_id"]=> string(5) "13461" } } } [106]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "247" ["ques_text"]=> string(4822) "

The expansion of an ideal gas of mass m at a constant pressure P is given by the straight line D. Then the expansion of the same ideal gas of mass 2m at a pressure P/ 2 is given by the straight line

" ["question_id"]=> string(4) "3406" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13509" ["question_id"]=> string(4) "3406" ["opt_desc"]=> string(13) "

E

" } [1]=> array(3) { ["option_id"]=> string(5) "13510" ["question_id"]=> string(4) "3406" ["opt_desc"]=> string(13) "

C

" } [2]=> array(3) { ["option_id"]=> string(5) "13511" ["question_id"]=> string(4) "3406" ["opt_desc"]=> string(13) "

B

" } [3]=> array(3) { ["option_id"]=> string(5) "13512" ["question_id"]=> string(4) "3406" ["opt_desc"]=> string(13) "

A

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3450" ["question_id"]=> string(4) "3406" ["option_id"]=> string(5) "13512" } } } [107]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "248" ["ques_text"]=> string(5477) "

An ideal monoatomic gas is confined in a cylinder by a spring-loaded piston if cross-section 8 x 10-3m2. Initially the gas is at 300K and occupies a volume of 2.4 x 10-3m3 and the spring is in a relaxed state. The gas is heated by a small heater coil H. The force constant of the spring is 8000 N/m, and the atmospheric pressure is 1.0 x 105Pa. The cylinder and piston are thermally insulated. The piston and the spring are massless and there is no friction between the piston and cylinder. There is no heat loss through heater coil wire leads and thermal capacity of the heater coil is negligible. With all the above assumptions, if the gas is heated by the heater until the piston moves out slowly by 0.1m, then the final temperature is

" ["question_id"]=> string(4) "3420" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13565" ["question_id"]=> string(4) "3420" ["opt_desc"]=> string(26) "

400 K

" } [1]=> array(3) { ["option_id"]=> string(5) "13566" ["question_id"]=> string(4) "3420" ["opt_desc"]=> string(26) "

800 K

" } [2]=> array(3) { ["option_id"]=> string(5) "13567" ["question_id"]=> string(4) "3420" ["opt_desc"]=> string(27) "

1200 K

" } [3]=> array(3) { ["option_id"]=> string(5) "13568" ["question_id"]=> string(4) "3420" ["opt_desc"]=> string(26) "

300 K

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3464" ["question_id"]=> string(4) "3420" ["option_id"]=> string(5) "13566" } } } [108]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "248" ["ques_text"]=> string(7931) "

Two identical glass bulbs are interconnected by a thin glass tube. A gas is filled in these bulbs at N.T.P. If one bulb is placed in ice and another bulb is placed in hot bath, then the pressure of the gas becomes 1.5 times. The temperature of hot bath will be

" ["question_id"]=> string(4) "3422" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13573" ["question_id"]=> string(4) "3422" ["opt_desc"]=> string(30) "

100°C

" } [1]=> array(3) { ["option_id"]=> string(5) "13574" ["question_id"]=> string(4) "3422" ["opt_desc"]=> string(30) "

182°C

" } [2]=> array(3) { ["option_id"]=> string(5) "13575" ["question_id"]=> string(4) "3422" ["opt_desc"]=> string(30) "

256°C

" } [3]=> array(3) { ["option_id"]=> string(5) "13576" ["question_id"]=> string(4) "3422" ["opt_desc"]=> string(30) "

546°C

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3466" ["question_id"]=> string(4) "3422" ["option_id"]=> string(5) "13576" } } } [109]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "249" ["ques_text"]=> string(6155) "

At the top of a mountain a thermometer reads 7°C and a barometer reads 70 cm of Hg. At the bottom of the mountain these read 27°C and 76 cm of Hg respectively. Comparison of density of air at the top with that of bottom is

" ["question_id"]=> string(4) "3428" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13597" ["question_id"]=> string(4) "3428" ["opt_desc"]=> string(17) "

75/76

" } [1]=> array(3) { ["option_id"]=> string(5) "13598" ["question_id"]=> string(4) "3428" ["opt_desc"]=> string(17) "

70/76

" } [2]=> array(3) { ["option_id"]=> string(5) "13599" ["question_id"]=> string(4) "3428" ["opt_desc"]=> string(17) "

76/75

" } [3]=> array(3) { ["option_id"]=> string(5) "13600" ["question_id"]=> string(4) "3428" ["opt_desc"]=> string(17) "

76/70

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3472" ["question_id"]=> string(4) "3428" ["option_id"]=> string(5) "13597" } } } [110]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "253" ["ques_text"]=> string(4111) "

A liquid of density d is pumped by a pump P from situation (i) to situation (ii) as shown in the diagram. If the cross-section of each of the vessels is a, then the work done in pumping (neglecting friction effects) is

" ["question_id"]=> string(4) "3514" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13941" ["question_id"]=> string(4) "3514" ["opt_desc"]=> string(25) "

2dgh

" } [1]=> array(3) { ["option_id"]=> string(5) "13942" ["question_id"]=> string(4) "3514" ["opt_desc"]=> string(25) "

dgha

" } [2]=> array(3) { ["option_id"]=> string(5) "13943" ["question_id"]=> string(4) "3514" ["opt_desc"]=> string(47) "

2dgh2a

" } [3]=> array(3) { ["option_id"]=> string(5) "13944" ["question_id"]=> string(4) "3514" ["opt_desc"]=> string(46) "

dgh2a

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3559" ["question_id"]=> string(4) "3514" ["option_id"]=> string(5) "13944" } } } [111]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "255" ["ques_text"]=> string(8674) "

Two carts on horizontal straight rails are pushed apart by an explosion of a powder charge Q placed between the carts. Suppose the coefficients of friction between the carts and rails are identical. If the 200 kg cart travels a distance of 36 metres and stops, the distance covered by the cart weighing 300 kg is                                                   [CPMT 1989]

" ["question_id"]=> string(4) "3536" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14029" ["question_id"]=> string(4) "3536" ["opt_desc"]=> string(30) "

32 metres

" } [1]=> array(3) { ["option_id"]=> string(5) "14030" ["question_id"]=> string(4) "3536" ["opt_desc"]=> string(30) "

24 metres

" } [2]=> array(3) { ["option_id"]=> string(5) "14031" ["question_id"]=> string(4) "3536" ["opt_desc"]=> string(30) "

16 metres

" } [3]=> array(3) { ["option_id"]=> string(5) "14032" ["question_id"]=> string(4) "3536" ["opt_desc"]=> string(30) "

12 metres

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3582" ["question_id"]=> string(4) "3536" ["option_id"]=> string(5) "14031" } } } [112]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "255" ["ques_text"]=> string(3317) "

The graph between the resistive force F acting on a body and the distance covered by the body is shown in the figure. The mass of the body is 25 kg and initial velocity is 2 m/s. When the distance covered by the body is 5m, its kinetic energy would be

" ["question_id"]=> string(4) "3539" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14041" ["question_id"]=> string(4) "3539" ["opt_desc"]=> string(25) "

50 J

" } [1]=> array(3) { ["option_id"]=> string(5) "14042" ["question_id"]=> string(4) "3539" ["opt_desc"]=> string(25) "

40 J

" } [2]=> array(3) { ["option_id"]=> string(5) "14043" ["question_id"]=> string(4) "3539" ["opt_desc"]=> string(25) "

20 J

" } [3]=> array(3) { ["option_id"]=> string(5) "14044" ["question_id"]=> string(4) "3539" ["opt_desc"]=> string(25) "

10 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3587" ["question_id"]=> string(4) "3539" ["option_id"]=> string(5) "14044" } } } [113]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "255" ["ques_text"]=> string(5375) "

Two cars of same mass are moving with same speed v on two different roads inclined at an angle θ with each other, as shown in the figure. At the junction of these roads the two cars collide inelastically and move simultaneously with the same speed. The speed of these cars would be

" ["question_id"]=> string(4) "3540" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14045" ["question_id"]=> string(4) "3540" ["opt_desc"]=> string(27) "

v cos θ/2

" } [1]=> array(3) { ["option_id"]=> string(5) "14046" ["question_id"]=> string(4) "3540" ["opt_desc"]=> string(26) "

v/2 cosθ

" } [2]=> array(3) { ["option_id"]=> string(5) "14047" ["question_id"]=> string(4) "3540" ["opt_desc"]=> string(29) "

v/2 cos θ/2

" } [3]=> array(3) { ["option_id"]=> string(5) "14048" ["question_id"]=> string(4) "3540" ["opt_desc"]=> string(25) "

2v cosθ

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3588" ["question_id"]=> string(4) "3540" ["option_id"]=> string(5) "14045" } } } [114]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "255" ["ques_text"]=> string(9038) "

Three particles A, B and C of equal mass are moving with the same velocity v along the medians of an equilateral triangle. These particle collide at the centre G of triangle. After collision A becomes stationary, B retraces its path with velocity v then the magnitude and direction of velocity of C will be

" ["question_id"]=> string(4) "3546" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14069" ["question_id"]=> string(4) "3546" ["opt_desc"]=> string(49) "

v and opposite to B

" } [1]=> array(3) { ["option_id"]=> string(5) "14070" ["question_id"]=> string(4) "3546" ["opt_desc"]=> string(57) "

v and in the direction of A

" } [2]=> array(3) { ["option_id"]=> string(5) "14071" ["question_id"]=> string(4) "3546" ["opt_desc"]=> string(57) "

v and in the direction of C

" } [3]=> array(3) { ["option_id"]=> string(5) "14072" ["question_id"]=> string(4) "3546" ["opt_desc"]=> string(57) "

v and in the direction of B

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3594" ["question_id"]=> string(4) "3546" ["option_id"]=> string(5) "14072" } } } [115]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "256" ["ques_text"]=> string(8771) "

A sphere of mass 0.1 kg is attached to a cord of 1m length. Starting from the height of its point of suspension this sphere hits a block of same mass at rest on a frictionless table, If the impact is elastic, then the kinetic energy of the block after the collision is                                        [RPET 1991]

" ["question_id"]=> string(4) "3554" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14101" ["question_id"]=> string(4) "3554" ["opt_desc"]=> string(24) "

1 J

" } [1]=> array(3) { ["option_id"]=> string(5) "14102" ["question_id"]=> string(4) "3554" ["opt_desc"]=> string(25) "

10 J

" } [2]=> array(3) { ["option_id"]=> string(5) "14103" ["question_id"]=> string(4) "3554" ["opt_desc"]=> string(26) "

0.1 J

" } [3]=> array(3) { ["option_id"]=> string(5) "14104" ["question_id"]=> string(4) "3554" ["opt_desc"]=> string(26) "

0.5 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3602" ["question_id"]=> string(4) "3554" ["option_id"]=> string(5) "14101" } } } [116]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "256" ["ques_text"]=> string(7614) "

A block of mass 2kg is released from A on the track that is one quadrant of a circle of radius 1m. It slides down the track and reaches B with a speed of 4ms-1 and finally stops at C at a distance of 3m from B. The work done against the force of friction is

" ["question_id"]=> string(4) "3557" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14113" ["question_id"]=> string(4) "3557" ["opt_desc"]=> string(25) "

10 J

" } [1]=> array(3) { ["option_id"]=> string(5) "14114" ["question_id"]=> string(4) "3557" ["opt_desc"]=> string(25) "

20 J

" } [2]=> array(3) { ["option_id"]=> string(5) "14115" ["question_id"]=> string(4) "3557" ["opt_desc"]=> string(24) "

2 J

" } [3]=> array(3) { ["option_id"]=> string(5) "14116" ["question_id"]=> string(4) "3557" ["opt_desc"]=> string(24) "

6 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3605" ["question_id"]=> string(4) "3557" ["option_id"]=> string(5) "14114" } } } [117]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "257" ["ques_text"]=> string(3723) "

A bullet of mass m moving with a velocity v strikes a suspended wooden block of mass M as shown in the figure and sticks to it. If the block rises to a height h the initial velocity of the bullet is                        

[MP PMT 1997]

" ["question_id"]=> string(4) "3566" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14149" ["question_id"]=> string(4) "3566" ["opt_desc"]=> string(183) "

(m+M/m)2gh

" } [1]=> array(3) { ["option_id"]=> string(5) "14150" ["question_id"]=> string(4) "3566" ["opt_desc"]=> string(113) "

2gh

" } [2]=> array(3) { ["option_id"]=> string(5) "14151" ["question_id"]=> string(4) "3566" ["opt_desc"]=> string(183) "

(M+m/M)2gh

" } [3]=> array(3) { ["option_id"]=> string(5) "14152" ["question_id"]=> string(4) "3566" ["opt_desc"]=> string(173) "

m/M+m)2gh

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3614" ["question_id"]=> string(4) "3566" ["option_id"]=> string(5) "14149" } } } [118]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "258" ["ques_text"]=> string(10310) "

Six identical balls are lined in a straight groove made on a horizontal frictionless surface as shown. Two similar balls each moving with a velocity v collide with the row of 6 balls from left. What will happen

" ["question_id"]=> string(4) "3572" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14173" ["question_id"]=> string(4) "3572" ["opt_desc"]=> string(114) "

One ball from the right rolls out with a speed 2v and the remaining balls will remain at rest

" } [1]=> array(3) { ["option_id"]=> string(5) "14174" ["question_id"]=> string(4) "3572" ["opt_desc"]=> string(119) "

Two balls from the right roll out with speed v each and the remaining balls will remain stationary

" } [2]=> array(3) { ["option_id"]=> string(5) "14175" ["question_id"]=> string(4) "3572" ["opt_desc"]=> string(129) "

All the six balls in the row will roll out with speed v/6 each and the two colliding balls will come to rest

" } [3]=> array(3) { ["option_id"]=> string(5) "14176" ["question_id"]=> string(4) "3572" ["opt_desc"]=> string(82) "

The colliding balls will come to rest and no ball rolls out from right

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3620" ["question_id"]=> string(4) "3572" ["option_id"]=> string(5) "14174" } } } [119]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "258" ["ques_text"]=> string(149) "

Two men with weights in the ratio 5 : 3 run up a staircase in times in the ratio 11 : 9. The ratio of power of first to that of second is

" ["question_id"]=> string(4) "3576" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14189" ["question_id"]=> string(4) "3576" ["opt_desc"]=> string(17) "

15/11

" } [1]=> array(3) { ["option_id"]=> string(5) "14190" ["question_id"]=> string(4) "3576" ["opt_desc"]=> string(17) "

11/15

" } [2]=> array(3) { ["option_id"]=> string(5) "14191" ["question_id"]=> string(4) "3576" ["opt_desc"]=> string(16) "

11/9

" } [3]=> array(3) { ["option_id"]=> string(5) "14192" ["question_id"]=> string(4) "3576" ["opt_desc"]=> string(16) "

9/11

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3624" ["question_id"]=> string(4) "3576" ["option_id"]=> string(5) "14189" } } } [120]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "262" ["ques_text"]=> string(10330) "

Six identical balls are lined in a straight groove made on a horizontal frictionless surface as shown. Two similar balls each moving with a velocity v collide with the row of 6 balls from left. What will happen

" ["question_id"]=> string(4) "3621" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14369" ["question_id"]=> string(4) "3621" ["opt_desc"]=> string(114) "

One ball from the right rolls out with a speed 2v and the remaining balls will remain at rest

" } [1]=> array(3) { ["option_id"]=> string(5) "14370" ["question_id"]=> string(4) "3621" ["opt_desc"]=> string(119) "

Two balls from the right roll out with speed v each and the remaining balls will remain stationary

" } [2]=> array(3) { ["option_id"]=> string(5) "14371" ["question_id"]=> string(4) "3621" ["opt_desc"]=> string(129) "

All the six balls in the row will roll out with speed v/6 each and the two colliding balls will come to rest

" } [3]=> array(3) { ["option_id"]=> string(5) "14372" ["question_id"]=> string(4) "3621" ["opt_desc"]=> string(82) "

The colliding balls will come to rest and no ball rolls out from right

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3669" ["question_id"]=> string(4) "3621" ["option_id"]=> string(5) "14370" } } } [121]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "266" ["ques_text"]=> string(149) "

Two men with weights in the ratio 5 : 3 run up a staircase in times in the ratio 11 : 9. The ratio of power of first to that of second is

" ["question_id"]=> string(4) "3686" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14626" ["question_id"]=> string(4) "3686" ["opt_desc"]=> string(17) "

15/11

" } [1]=> array(3) { ["option_id"]=> string(5) "14627" ["question_id"]=> string(4) "3686" ["opt_desc"]=> string(17) "

11/15

" } [2]=> array(3) { ["option_id"]=> string(5) "14628" ["question_id"]=> string(4) "3686" ["opt_desc"]=> string(16) "

11/9

" } [3]=> array(3) { ["option_id"]=> string(5) "14629" ["question_id"]=> string(4) "3686" ["opt_desc"]=> string(16) "

9/11

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3734" ["question_id"]=> string(4) "3686" ["option_id"]=> string(5) "14626" } } } [122]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "267" ["ques_text"]=> string(8383) "

Two carts on horizontal straight rails are pushed apart by an explosion of a powder charge Q placed between the carts. Suppose the coefficients of friction between the carts and rails are identical. If the 200 kg cart travels a distance of 36 metres and stops, the distance covered by the cart weighing 300 kg is

" ["question_id"]=> string(4) "3687" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14630" ["question_id"]=> string(4) "3687" ["opt_desc"]=> string(30) "

32 metres

" } [1]=> array(3) { ["option_id"]=> string(5) "14631" ["question_id"]=> string(4) "3687" ["opt_desc"]=> string(30) "

24 metres

" } [2]=> array(3) { ["option_id"]=> string(5) "14632" ["question_id"]=> string(4) "3687" ["opt_desc"]=> string(30) "

16 metres

" } [3]=> array(3) { ["option_id"]=> string(5) "14633" ["question_id"]=> string(4) "3687" ["opt_desc"]=> string(30) "

12 metres

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3735" ["question_id"]=> string(4) "3687" ["option_id"]=> string(5) "14632" } } } [123]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "269" ["ques_text"]=> string(7590) "

A block of mass 2kg is released from A on the track that is one quadrant of a circle of radius 1m. It slides down the track and reaches B with a speed of 4ms-1 and finally stops at C at a distance of 3m from B. The work done against the force of friction is

" ["question_id"]=> string(4) "3703" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14694" ["question_id"]=> string(4) "3703" ["opt_desc"]=> string(25) "

10 J

" } [1]=> array(3) { ["option_id"]=> string(5) "14695" ["question_id"]=> string(4) "3703" ["opt_desc"]=> string(25) "

20 J

" } [2]=> array(3) { ["option_id"]=> string(5) "14696" ["question_id"]=> string(4) "3703" ["opt_desc"]=> string(24) "

2 J

" } [3]=> array(3) { ["option_id"]=> string(5) "14697" ["question_id"]=> string(4) "3703" ["opt_desc"]=> string(24) "

6 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3751" ["question_id"]=> string(4) "3703" ["option_id"]=> string(5) "14695" } } } [124]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "269" ["ques_text"]=> string(3428) "

A block of mass M slides along the sides of a bowl as shown in the figure. The walls of the bowl are frictionless and the base has coefficient of friction 0.2. If the block is released from the top of the side, which is 1.5 m high, where will the block come to rest ? Given that the length of the base is 15 m

" ["question_id"]=> string(4) "3708" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14714" ["question_id"]=> string(4) "3708" ["opt_desc"]=> string(40) "

1 m from P

" } [1]=> array(3) { ["option_id"]=> string(5) "14715" ["question_id"]=> string(4) "3708" ["opt_desc"]=> string(21) "

Mid point

" } [2]=> array(3) { ["option_id"]=> string(5) "14716" ["question_id"]=> string(4) "3708" ["opt_desc"]=> string(40) "

2 m from P

" } [3]=> array(3) { ["option_id"]=> string(5) "14717" ["question_id"]=> string(4) "3708" ["opt_desc"]=> string(25) "

At Q

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3756" ["question_id"]=> string(4) "3708" ["option_id"]=> string(5) "14714" } } } [125]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "269" ["ques_text"]=> string(8525) "

A sphere of mass 0.1 kg is attached to a cord of 1m length. Starting from the height of its point of suspension this sphere hits a block of same mass at rest on a frictionless table, If the impact is elastic, then the kinetic energy of the block after the collision is

" ["question_id"]=> string(4) "3714" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14738" ["question_id"]=> string(4) "3714" ["opt_desc"]=> string(24) "

1 J

" } [1]=> array(3) { ["option_id"]=> string(5) "14739" ["question_id"]=> string(4) "3714" ["opt_desc"]=> string(25) "

10 J

" } [2]=> array(3) { ["option_id"]=> string(5) "14740" ["question_id"]=> string(4) "3714" ["opt_desc"]=> string(26) "

0.1 J

" } [3]=> array(3) { ["option_id"]=> string(5) "14741" ["question_id"]=> string(4) "3714" ["opt_desc"]=> string(26) "

0.5 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3762" ["question_id"]=> string(4) "3714" ["option_id"]=> string(5) "14738" } } } [126]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "269" ["ques_text"]=> string(5023) "

If W1, W2 and W3 represent the work done in moving a particle from A to B along three different paths 1, 2 and 3 respectively (as shown) in the gravitational field of a point mass m, find the correct relation

" ["question_id"]=> string(4) "3720" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14762" ["question_id"]=> string(4) "3720" ["opt_desc"]=> string(59) "

W1>W2>W3

" } [1]=> array(3) { ["option_id"]=> string(5) "14763" ["question_id"]=> string(4) "3720" ["opt_desc"]=> string(53) "

W1=W2=W3

" } [2]=> array(3) { ["option_id"]=> string(5) "14764" ["question_id"]=> string(4) "3720" ["opt_desc"]=> string(59) "

W1<W2<W3

" } [3]=> array(3) { ["option_id"]=> string(5) "14765" ["question_id"]=> string(4) "3720" ["opt_desc"]=> string(59) "

W2>W1>W3

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3768" ["question_id"]=> string(4) "3720" ["option_id"]=> string(5) "14763" } } } [127]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "270" ["ques_text"]=> string(2899) "

A metre stick, of mass 400 g, is pivoted at one end displaced through an angle 60o. The increase in its potential energy is

" ["question_id"]=> string(4) "3729" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "14798" ["question_id"]=> string(4) "3729" ["opt_desc"]=> string(24) "

1 J

" } [1]=> array(3) { ["option_id"]=> string(5) "14799" ["question_id"]=> string(4) "3729" ["opt_desc"]=> string(25) "

10 J

" } [2]=> array(3) { ["option_id"]=> string(5) "14800" ["question_id"]=> string(4) "3729" ["opt_desc"]=> string(26) "

100 J

" } [3]=> array(3) { ["option_id"]=> string(5) "14801" ["question_id"]=> string(4) "3729" ["opt_desc"]=> string(27) "

1000 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3778" ["question_id"]=> string(4) "3729" ["option_id"]=> string(5) "14798" } } } [128]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "275" ["ques_text"]=> string(2894) "

In the following circuit E1 = 4V, R1 = 2W                                                                 

E2 = 6V, R2 = 2? and R3 = 4?. The current i1 is

" ["question_id"]=> string(4) "3792" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15050" ["question_id"]=> string(4) "3792" ["opt_desc"]=> string(32) "

 1.6 A

" } [1]=> array(3) { ["option_id"]=> string(5) "15051" ["question_id"]=> string(4) "3792" ["opt_desc"]=> string(26) "

1.8 A

" } [2]=> array(3) { ["option_id"]=> string(5) "15052" ["question_id"]=> string(4) "3792" ["opt_desc"]=> string(27) "

2.25 A

" } [3]=> array(3) { ["option_id"]=> string(5) "15053" ["question_id"]=> string(4) "3792" ["opt_desc"]=> string(24) "

1 A

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3841" ["question_id"]=> string(4) "3792" ["option_id"]=> string(5) "15051" } } } [129]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "276" ["ques_text"]=> string(1820) "

In the following circuit diagram fig. the lengths of the wires AB and BC are same but the radius of AB is three times that of BC. The ratio of potential gradients at AB and BC will be

" ["question_id"]=> string(4) "3799" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15078" ["question_id"]=> string(4) "3799" ["opt_desc"]=> string(17) "

1 : 9

" } [1]=> array(3) { ["option_id"]=> string(5) "15079" ["question_id"]=> string(4) "3799" ["opt_desc"]=> string(17) "

9 : 1

" } [2]=> array(3) { ["option_id"]=> string(5) "15080" ["question_id"]=> string(4) "3799" ["opt_desc"]=> string(17) "

3 : 1

" } [3]=> array(3) { ["option_id"]=> string(5) "15081" ["question_id"]=> string(4) "3799" ["opt_desc"]=> string(17) "

1 : 3

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3848" ["question_id"]=> string(4) "3799" ["option_id"]=> string(5) "15078" } } } [130]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "276" ["ques_text"]=> string(2245) "

A beam of electron is emitted from filament and accelerated by an electric field as shown in figure. The two stops at the left ensure that the electric beam has uniform cross-section

" ["question_id"]=> string(4) "3805" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15102" ["question_id"]=> string(4) "3805" ["opt_desc"]=> string(78) "

The speed of the electron is more at B than at A

" } [1]=> array(3) { ["option_id"]=> string(5) "15103" ["question_id"]=> string(4) "3805" ["opt_desc"]=> string(54) "

The electric current is from left to right

" } [2]=> array(3) { ["option_id"]=> string(5) "15104" ["question_id"]=> string(4) "3805" ["opt_desc"]=> string(83) "

The magnitude of the current is larger at B than at A

" } [3]=> array(3) { ["option_id"]=> string(5) "15105" ["question_id"]=> string(4) "3805" ["opt_desc"]=> string(72) "

The current density is more at B than at A

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3854" ["question_id"]=> string(4) "3805" ["option_id"]=> string(5) "15102" } } } [131]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "277" ["ques_text"]=> string(4138) "

The total current supplied to the circuit by the battery is

" ["question_id"]=> string(4) "3817" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15150" ["question_id"]=> string(4) "3817" ["opt_desc"]=> string(15) "

4 A

" } [1]=> array(3) { ["option_id"]=> string(5) "15151" ["question_id"]=> string(4) "3817" ["opt_desc"]=> string(15) "

2 A

" } [2]=> array(3) { ["option_id"]=> string(5) "15152" ["question_id"]=> string(4) "3817" ["opt_desc"]=> string(21) "

 1 A

" } [3]=> array(3) { ["option_id"]=> string(5) "15153" ["question_id"]=> string(4) "3817" ["opt_desc"]=> string(15) "

6 A

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3866" ["question_id"]=> string(4) "3817" ["option_id"]=> string(5) "15150" } } } [132]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "277" ["ques_text"]=> string(3650) "

The equivalent resistance of the following diagram between A and B  is                   

" ["question_id"]=> string(4) "3818" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15154" ["question_id"]=> string(4) "3818" ["opt_desc"]=> string(118) "

24Ω

" } [1]=> array(3) { ["option_id"]=> string(5) "15155" ["question_id"]=> string(4) "3818" ["opt_desc"]=> string(21) "

9  ?

" } [2]=> array(3) { ["option_id"]=> string(5) "15156" ["question_id"]=> string(4) "3818" ["opt_desc"]=> string(15) "

6 ?

" } [3]=> array(3) { ["option_id"]=> string(5) "15157" ["question_id"]=> string(4) "3818" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3867" ["question_id"]=> string(4) "3818" ["option_id"]=> string(5) "15157" } } } [133]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "277" ["ques_text"]=> string(4050) "

In the given figure, when galvanometer shows no deflection, the current (in ampere) flowing through 5 ? resistance will be

" ["question_id"]=> string(4) "3824" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15178" ["question_id"]=> string(4) "3824" ["opt_desc"]=> string(15) "

0.5

" } [1]=> array(3) { ["option_id"]=> string(5) "15179" ["question_id"]=> string(4) "3824" ["opt_desc"]=> string(15) "

0.6

" } [2]=> array(3) { ["option_id"]=> string(5) "15180" ["question_id"]=> string(4) "3824" ["opt_desc"]=> string(15) "

0.9

" } [3]=> array(3) { ["option_id"]=> string(5) "15181" ["question_id"]=> string(4) "3824" ["opt_desc"]=> string(15) "

1.5

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3873" ["question_id"]=> string(4) "3824" ["option_id"]=> string(5) "15179" } } } [134]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "277" ["ques_text"]=> string(2925) "

Four resistances are connected in a circuit in the given figure. The electric current flowing through 4 ohm and 6 ohm resistance is respectively

" ["question_id"]=> string(4) "3826" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15186" ["question_id"]=> string(4) "3826" ["opt_desc"]=> string(45) "

2 amp and 4 amp

" } [1]=> array(3) { ["option_id"]=> string(5) "15187" ["question_id"]=> string(4) "3826" ["opt_desc"]=> string(45) "

1 amp and 2 amp

" } [2]=> array(3) { ["option_id"]=> string(5) "15188" ["question_id"]=> string(4) "3826" ["opt_desc"]=> string(45) "

1 amp and 1 amp

" } [3]=> array(3) { ["option_id"]=> string(5) "15189" ["question_id"]=> string(4) "3826" ["opt_desc"]=> string(45) "

2 amp and 2 amp

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3875" ["question_id"]=> string(4) "3826" ["option_id"]=> string(5) "15189" } } } [135]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "278" ["ques_text"]=> string(4502) "

In the circuit shown in the figure, the current through

" ["question_id"]=> string(4) "3831" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15206" ["question_id"]=> string(4) "3831" ["opt_desc"]=> string(46) "

The 3 ? resistor is 0.5 A

" } [1]=> array(3) { ["option_id"]=> string(5) "15207" ["question_id"]=> string(4) "3831" ["opt_desc"]=> string(46) "

The 3 ?resistor is 0.25 A

" } [2]=> array(3) { ["option_id"]=> string(5) "15208" ["question_id"]=> string(4) "3831" ["opt_desc"]=> string(46) "

The 4 ? resistor is 0.5 A

" } [3]=> array(3) { ["option_id"]=> string(5) "15209" ["question_id"]=> string(4) "3831" ["opt_desc"]=> string(47) "

The 4 ? resistor is 0.25 A

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3880" ["question_id"]=> string(4) "3831" ["option_id"]=> string(5) "15209" } } } [136]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "278" ["ques_text"]=> string(3679) "

In the steady state what will be the power dissipation in following circuit\

" ["question_id"]=> string(4) "3841" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15246" ["question_id"]=> string(4) "3841" ["opt_desc"]=> string(26) "

1.5 W

" } [1]=> array(3) { ["option_id"]=> string(5) "15247" ["question_id"]=> string(4) "3841" ["opt_desc"]=> string(24) "

2 W

" } [2]=> array(3) { ["option_id"]=> string(5) "15248" ["question_id"]=> string(4) "3841" ["opt_desc"]=> string(24) "

1 W

" } [3]=> array(3) { ["option_id"]=> string(5) "15249" ["question_id"]=> string(4) "3841" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3890" ["question_id"]=> string(4) "3841" ["option_id"]=> string(5) "15248" } } } [137]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "280" ["ques_text"]=> string(4721) "

What will be the resultant magnetic field at origin due to four infinite length wires. If each wire produces magnetic field 'B' at origin

" ["question_id"]=> string(4) "3844" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15258" ["question_id"]=> string(4) "3844" ["opt_desc"]=> string(24) "

4 B

" } [1]=> array(3) { ["option_id"]=> string(5) "15259" ["question_id"]=> string(4) "3844" ["opt_desc"]=> string(125) "

2B

" } [2]=> array(3) { ["option_id"]=> string(5) "15260" ["question_id"]=> string(4) "3844" ["opt_desc"]=> string(135) "

22B

" } [3]=> array(3) { ["option_id"]=> string(5) "15261" ["question_id"]=> string(4) "3844" ["opt_desc"]=> string(16) "

Zero

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3893" ["question_id"]=> string(4) "3844" ["option_id"]=> string(5) "15260" } } } [138]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "280" ["ques_text"]=> string(7223) "

Figure shows the cress sectional view of the hollow cylindrical conductor with inner radius 'R' and outer radius '2R', cylinder carrying uniformly distributed current along it's axis. The magnetic induction at point 'P' at a distance 3R2from the axis of the cylinder will be

" ["question_id"]=> string(4) "3849" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15278" ["question_id"]=> string(4) "3849" ["opt_desc"]=> string(16) "

Zero

" } [1]=> array(3) { ["option_id"]=> string(5) "15279" ["question_id"]=> string(4) "3849" ["opt_desc"]=> string(225) "

5μ0i72πR

" } [2]=> array(3) { ["option_id"]=> string(5) "15280" ["question_id"]=> string(4) "3849" ["opt_desc"]=> string(225) "

7μ0i18πR

" } [3]=> array(3) { ["option_id"]=> string(5) "15281" ["question_id"]=> string(4) "3849" ["opt_desc"]=> string(225) "

5μ0i36πR

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3898" ["question_id"]=> string(4) "3849" ["option_id"]=> string(5) "15281" } } } [139]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "280" ["ques_text"]=> string(4268) "

For the solenoid shown in figure. The magnetic field at point P is                                 

" ["question_id"]=> string(4) "3851" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15286" ["question_id"]=> string(4) "3851" ["opt_desc"]=> string(229) "

μ0ni4(3+1)

" } [1]=> array(3) { ["option_id"]=> string(5) "15287" ["question_id"]=> string(4) "3851" ["opt_desc"]=> string(189) "

3μ0ni4

" } [2]=> array(3) { ["option_id"]=> string(5) "15288" ["question_id"]=> string(4) "3851" ["opt_desc"]=> string(229) "

μ0ni2(3+1)

" } [3]=> array(3) { ["option_id"]=> string(5) "15289" ["question_id"]=> string(4) "3851" ["opt_desc"]=> string(235) "

μ0ni4(31)

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3900" ["question_id"]=> string(4) "3851" ["option_id"]=> string(5) "15286" } } } [140]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "280" ["ques_text"]=> string(702) "

Electrons move at right angles to a magnetic field of 1.5×102Tesla with a speed of 6×1027  m/s. If the specific charge of the electron is 1.7×1011 Coul/kg. The radius of the circular path will be

" ["question_id"]=> string(4) "3854" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15298" ["question_id"]=> string(4) "3854" ["opt_desc"]=> string(33) "

 2.9 cm

" } [1]=> array(3) { ["option_id"]=> string(5) "15299" ["question_id"]=> string(4) "3854" ["opt_desc"]=> string(27) "

3.9 cm

" } [2]=> array(3) { ["option_id"]=> string(5) "15300" ["question_id"]=> string(4) "3854" ["opt_desc"]=> string(34) "

 2.35 cm

" } [3]=> array(3) { ["option_id"]=> string(5) "15301" ["question_id"]=> string(4) "3854" ["opt_desc"]=> string(25) "

3 cm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3903" ["question_id"]=> string(4) "3854" ["option_id"]=> string(5) "15300" } } } [141]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "290" ["ques_text"]=> string(4612) "

In the following common emitter configuration an NPN transistor with current gain β = 100 is used. The output voltage of the amplifier will be

" ["question_id"]=> string(4) "3989" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15838" ["question_id"]=> string(4) "3989" ["opt_desc"]=> string(26) "

10 mV

" } [1]=> array(3) { ["option_id"]=> string(5) "15839" ["question_id"]=> string(4) "3989" ["opt_desc"]=> string(26) "

0.1 V

" } [2]=> array(3) { ["option_id"]=> string(5) "15840" ["question_id"]=> string(4) "3989" ["opt_desc"]=> string(28) "

1.0 V `

" } [3]=> array(3) { ["option_id"]=> string(5) "15841" ["question_id"]=> string(4) "3989" ["opt_desc"]=> string(25) "

10 V

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "4038" ["question_id"]=> string(4) "3989" ["option_id"]=> string(5) "15840" } } } [142]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "179" ["ques_text"]=> string(429) "

Two trains, one travelling at 90 m/s and the other travelling at 120 m/s, are moving towards each other on the same track. When they are 11 km apart, both drivers simultaneously apply brakes. If the brakes decelerate each train at the rate of 3 m/s2,then the distance travelled by the first train is.

" ["question_id"]=> string(4) "4080" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "16202" ["question_id"]=> string(4) "4080" ["opt_desc"]=> string(27) "

1350 m

" } [1]=> array(3) { ["option_id"]=> string(5) "16203" ["question_id"]=> string(4) "4080" ["opt_desc"]=> string(27) "

2400 m

" } [2]=> array(3) { ["option_id"]=> string(5) "16204" ["question_id"]=> string(4) "4080" ["opt_desc"]=> string(27) "

4740 m

" } [3]=> array(3) { ["option_id"]=> string(5) "16205" ["question_id"]=> string(4) "4080" ["opt_desc"]=> string(27) "

8870 m

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "4129" ["question_id"]=> string(4) "4080" ["option_id"]=> string(5) "16202" } } } [143]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "300" ["ques_text"]=> string(291) "

Water rises to a height of 10cm in capillary tube and mercury falls to a depth of 3.112cm in the same capillary tube. If the density of mercury is 13.6 and the angle of contact for mercury is 1350, the ratio of surface tension of water and mercury is

" ["question_id"]=> string(4) "4200" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "16682" ["question_id"]=> string(4) "4200" ["opt_desc"]=> string(20) "

1 : 0.15

" } [1]=> array(3) { ["option_id"]=> string(5) "16683" ["question_id"]=> string(4) "4200" ["opt_desc"]=> string(15) "

1:3

" } [2]=> array(3) { ["option_id"]=> string(5) "16684" ["question_id"]=> string(4) "4200" ["opt_desc"]=> string(15) "

1:6

" } [3]=> array(3) { ["option_id"]=> string(5) "16685" ["question_id"]=> string(4) "4200" ["opt_desc"]=> string(19) "

1.5 : 1

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "4249" ["question_id"]=> string(4) "4200" ["option_id"]=> string(5) "16684" } } } [144]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "300" ["ques_text"]=> string(2135) "

In a U-tube the radii of two columns are respectively r1 and r2 and if a liquid of density d filled in it has level difference of h then the surface tension of the liquid is

" ["question_id"]=> string(4) "4205" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "16702" ["question_id"]=> string(4) "4205" ["opt_desc"]=> string(241) "

T=hdgr2r1

" } [1]=> array(3) { ["option_id"]=> string(5) "16703" ["question_id"]=> string(4) "4205" ["opt_desc"]=> string(258) "

T=(r2r1)hdg2

" } [2]=> array(3) { ["option_id"]=> string(5) "16704" ["question_id"]=> string(4) "4205" ["opt_desc"]=> string(252) "

T=(r1+r2)hdg2

" } [3]=> array(3) { ["option_id"]=> string(5) "16705" ["question_id"]=> string(4) "4205" ["opt_desc"]=> string(365) "

T=hdg2(r1r2)r2r1

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "4254" ["question_id"]=> string(4) "4205" ["option_id"]=> string(5) "16705" } } } } 11|Sureden:Your Education Partner
System of units : A complete set of units, both fundamental and derived for all kinds of physical quantities is called system of units. The common systems are given below (1) CGS system : The system is also called Gaussian system of units. In
System of units : A complete set of units, both fundamental and derived for all kinds of physical quantities is called system of units. The common systems are given below (1) CGS system : The system is also called Gaussian system of units. In it length, mass
Coordination id the act of making different organs of body to work together to produce an effect in body, and our body need such control and coordination of all organs to prod
The study of nervous system in all aspects id called neurology. Nervous tissue :- It fours the nervous system in animals.
It has 2 main parts : CNS and PNS. (A)  CNS (central nervous system ):-it has further 2 parts  brain and spin
It is divided into 2 parts : (1.1) Brain and (1.2) spinal cord. (1.1)        
It is located in the vertebral canal of vertebral column and 45 cm long. It extends from upper level of atlas its first lumber vertebral of vertebral column. Spinal cord is al
The nerves that arise from or join brain. In human being, these are 12 pairs of Cranial nerves.
they arise from spinal cord in human being, these are 31 pairs of spinal nerves. Divided into 5 pairs. (1)&n
Animals show 2 types of actions :-  
Any substance such as acetylcholine or dopamine, responsible for sending nerve signals. Synapse:- the function between the end of one neuron a
(1)   Poliomyelitis:- A cute infection by poliovirus, especially in spinal cord and brainstem, causing muscle weakness, paraly
Sensory system consists of simple to complex structure called sensory receptors. Simple sensory receptors ore called primary sense cell. More c
There is a pair of ears to hear. They are located on sides of head. Study of ear in all aspects is called otology. Ear shows 3 parts :-
The act of changing place either by full body or by one or more of body parts is called movement. Study of movements is called Kinesiology.
muscular :- (that involves muscles  mostly occur at cellular level o
A pair of eyes are organs of sight. Ophthalmology is the study of structure, function and disease of rye. They are located in orbits (bony cavities). Of skull.
Ideal gas :- it is that gas which obeys the gas laws and obey ideal gas equation. Characteristics of ideal gas :-
Study of muscles is called mycology. Muscle system consist muscle fibers as smallest unit.
the hard, protective and supportive parts of body forms skeleton (skeletal system). In our body, bones & some cartilages form this system & provide a frame
Skull :- it is protective covering of head. It has 4 parts :- Cranium
A type of tissue that connects 2 or more bones together at their meeting place, is joint (articulation/connection). Study of joints is called arthrology.
Sprain:- injury to joint capsule, due to stretching or tearing etc. it causes pain in joints. Arthritis:- (aching joints
According to John Dalton, matter was made up of extremely small invisible particles called atoms (Greek word) atom means unstable. But according to J.J.Thomson , Goldstein, Ru
Proton was discovered by E. GoldStein. He using a perforated cathode , when high voltage is passed  though a gas under reduced pressure then source rays travel in the opp
Physical Quantity. A quantity which can be measured and by which various physical phenomenon can be explained and expressed in form of laws of physics is called a physical quantity. For example length, mass, time, force etc.
Some Definitions and Units  Practical Units. (1) Length : (i) 1 fermi = 1 fm = 10–15m  (ii) 1 angstrom = 1Å = 10–10m = 10
Dimensions of a Physical Quantity. The powers to which fundamental quantities must be raised in order to express the given physical quantity are called its dimensions. To make it more clear, consider the physical quantity force
Application of Dimensional Analysis. (1) To find the unit of a physical quantity in a given system of units : In a dimensional formula, replacing M, L and T by the fundamental units of the required system we can get the un
Load More...
cover

Test Details

The parameter, on which the value of the determinant

cover

Test Details

The number of distinct real roots of

cover

Test Details

The determinant

cover

Test Details

If f(x) =

cover

Test Details

Given, 2x – y + 2z = 2, x – 2y + z = - 4, x + y + ƛz = 4, then the value of ƛ such that the given system of equations has no solution, is

cover

Test Details

If α, β ≠ 0 and f(n) = αn + βn and

cover

Test Details

The determinant

cover

Test Details

The packing efficiency of the two-dimensional square unit cell shown below

cover

Test Details

A compound MpXq has cubic close packing (ccp) arrangement of X. Its unit cell structure is shown below The empirical formula of the compound,  is

cover

Test Details

The arrangement of X- ions around A+ io in solid AX is given in the figure (not drawn to scale). If the radius of X- is 250 pm, the radius of A+ is

cover

Test Details

In figure are shown charges q1 = + 2 × 10–8 C and q2 = – 0.4 × 10–8 C. A charge q3 = 0.2 × 10–8 C in moved along the arc of a circle

cover

Test Details

What is the effective force between two charges as compared to force between same two charges placed at same distance.

cover

Test Details

The field pattern which is not possible is given by

cover

Test Details

Due to an electric dipole shown in fig., the electric field intensity is parallel to dipole axis :

cover

Test Details

In the Bohr’s model of hydrogen atom, the electrons moves around the nucleus in a circular orbit of a radius 5 * 10–11 metre. It’s time period is 1.5 ´ 10–16 sec. The current associated is       

cover

Test Details

From the graph between current i & voltage V shown, identity the portion corresponding to negative resistance[CBSE PMT 1997]

cover

Test Details

In the figure a carbon resistor has band of different colours on its body. The resistance of the following body is [Kerala PET 2002]

cover

Test Details

The force required to stretch a steel wire of 1 cm2 cross-section to 1.1 times its length would be Y=2*1011 N/m2                        &

cover

Test Details

The magnitude and direction of the current in the circuit shown will be   [CPMT 1986, 88]

cover

Test Details

What will be the equivalent resistance of circuit shown in figure between points A and D           [CBSE PMT 1996]

cover

Test Details

How many isomers of C5H11OH will be primary alcohols? [1992]

cover

Test Details

Name of the compound given below

cover

Test Details

The state of hybridization of C2, C3, C5 and C6 of the hydrocarbon,

cover

Test Details

Two inclined frictionless tracks of different inclinations (q1 < q2) meet at A from where two blocks P and Q of different masses are allowed to slide down from rest at the same time, one on each track as shown in fig.

cover

Test Details

Ratio of Cp and Cv of a has ‘x’ is 1.4. The number of atoms of the gas ‘x’ present in 11.2 L of it at NTP will be                      &nb

cover

Test Details

Boron has two stable isoropes, 10B (19%) and 11B (81%). Calculate average atomic weight or boron in the periodic table.                         &nb

cover

Test Details

Given below is an incomplete table about certain hormones, their source glands and one major effect of each on the body of humans. Identify the correct option for the blanks A, B and C :  (CBSE 2011)

cover

Test Details

Diabetes insipidus is due to insufficient release of :                           (AMU 2011)

cover

Test Details

Irrespective of the source, pure sample , of water always yields 88.89% mass of oxygen and 11.11% mass of hydrogen. This is explained by the law of

cover

Test Details

The vapour density of a gas is 11.2. The volume occupied by 11.2 g of the gas at NTP will be

cover

Test Details

The element with the atomic number 118, will be

cover

Test Details

Name of the compound given below

cover

Test Details

The state of hybridization of C2, C3, C5 and C6 of the hydrocarbon,

cover

Test Details

Which of the following is fast debrominated?

cover

Test Details

The edge length of face centred unit cubic cell is 508 pm. If the radus of the cation is 110 pm, the radius of one anion is

cover

Test Details

How many isomers of C5H11OH will be primary alcohols?

cover

Test Details

On dividing 0.25 by 22.1176 the actual answer is 0.011303. The correctly reported answer will be

cover

Test Details

Current flows due north in a horizontal transmission line. Magnetic field at a point P vertically above it directed

cover

Test Details

A wire in the form of a square of side a carries a current i. Then the magnetic induction at the centre of the square wire is (Magnetic permeability of free space = m0)       

cover

Test Details

Electrons move at right angles to a magnetic field of Tesla with a speed of 6 X 1027 m/s. If the specific charge of the electron is 1.7 x 1011 Coul/kg. The radius of the circular path will be            &n

cover

Test Details

A particle with 10–11 coulomb of charge and 10–7 kg mass is moving with a velocity of 108 m/s along the y-axis. A uniform static magnetic field B = 0.5 Tesla is acting along the x-direct

cover

Test Details

A charge + q and a charge –q are placed at x = +a and x = -a, respectively as shown in fig. 12.1. The variation of E is plotted a function of x by assuming positive E as oriented along the positive x-axis. Identify the correct variation of E along the x-axis.

cover

Test Details

The value of ∑k=sin2πk11-i

cover

Test Details

Find the position of point from wire 'B' where net magnetic field is zero due to following current distribution

cover

Test Details

Find out the magnitude of the magnetic field at point P due to following current distribution

cover

Test Details

An equilateral triangle of side 'a' carries a current i then find out the magnetic field at point P which is vertex of triangle

cover

Test Details

A bag contains for tickets marked with numbers 112, 121, 211, 222. One ticket is drawn at random from the bag. Let Ei (i=1, 2, 3) denote the event that the digit on the ticket is 2. Then

cover

Test Details

Find magnetic field at centre O in each of each of the following figure

cover

Test Details

Electrons move at right angles to a magnetic field of 1.5 x 10-2Tesla with a speed of 6 x 1027m/s. If the specific charge of the electron is 1.7 x 1011 Coul/kg. The radius of the circular path will be

cover

Test Details

For the solenoid shown in figure. The magnetic field at point P is

cover

Test Details

Figure shows the cress sectional view of the hollow cylindrical conductor with inner radius 'R' and outer radius '2R', cylinder carrying uniformly distributed current along it's axis. The magnetic induction at point 'P' at a distance 3R/2

cover

Test Details

 Find out the magnitude of the magnetic field at point P due to following current distribution

cover

Test Details

A particle with 10–11 coulomb of charge and 10–7 kg mass is moving with a velocity of 108 m/s along the y-axis. A uniform static magnetic field B = 0.5 Tesla is acting along the x-direct

cover

Test Details

Wires 1 and 2 carrying currents f1 and f2 respectively are inclined at an angle θ to each other. What is the force on a small element dl of wire 2 at a distance of r from 1 (as shown in figure) due to the magnetic field of wire 1

cover

Test Details

A circular loop of radius a, carrying a current i, is placed in a two-dimensional magnetic field. The centre of the loop coincides with the centre of the field. The strength of the magnetic field at the periphery of the loop is B. Find the magnetic force on the wire

cover

Test Details

A conductor PQRSTU, each side of length L, bent as shown in the figure, carries a current i and is placed in a uniform magnetic induction B directed parallel to the positive Y-axis. The force experience by the wire and its direction are

cover

Test Details

Three long, straight and parallel wires carrying currents are arranged as shown in figure. The force experienced by 10 cm length of wire Q is

cover

Test Details

A square coil of N turns (with length of each side equal L) carrying current i is placed in a uniform magnetic field B→=B0j

cover

Test Details

A wire abc is carrying current i. It is bent as shown in fig and is placed in a uniform magnetic field of magnetic induction B. Length ab = l and ∠abc = 45o

cover

Test Details

A circular loop of radius a, carrying a current i, is placed in a two-dimensional magnetic field. The centre of the loop coincides with the centre of the field. The strength of the magnetic field at the periphery of the loop is B. Find the magnetic force on the wire

cover

Test Details

 Find out the magnitude of the magnetic field at point P due to following current distribution

cover

Test Details

 For the solenoid shown in figure. The magnetic field at point P is

cover

Test Details

A particle with 10–11 coulomb of charge and 10–7 kg mass is moving with a velocity of 108 m/s along the y-axis. A uniform static magnetic field B = 0.5 Tesla is acting along the x-direct

cover

Test Details

Figure shows the cress sectional view of the hollow cylindrical conductor with inner radius 'R' and outer radius '2R', cylinder carrying uniformly distributed current along it's axis. The magnetic induction at point 'P' at a distance 3R/2

cover

Test Details

The magnetic field is downward perpendicular to the plane of the paper and a few charged particles are projected in it. Which of the following is true

cover

Test Details

A conductor PQRSTU, each side of length L, bent as shown in the figure, carries a current i and is placed in a uniform magnetic induction B directed parallel to the positive Y-axis. The force experience by the wire and its direction are

cover

Test Details

A wire abc is carrying current i. It is bent as shown in fig and is placed in a uniform magnetic field of magnetic induction B. Length ab = l and Ð abc = 45o. The ratio of force on ab and on bc is

cover

Test Details

An equilateral triangle of side 'a' carries a current i then find out the magnetic field at point P which is vertex of triangle

cover

Test Details

An infinitely long, straight conductor AB is fixed and a current is passed through it. Another movable straight wire CD of finite length and carrying current is held perpendicular to it and released. Neglect weight of the wire

cover

Test Details

Find magnetic field at centre O in each of each of the following figure

cover

Test Details

Find magnetic field at centre O in each of the following figure

cover

Test Details

Electrons move at right angles to a magnetic field of 1.5 x 10-2Tesla with a speed of 6 x 1027m/s. If the specific charge of the electron is 1.7 x 1011 Coul/kg. The radius of the circular path will be     &nbs

cover

Test Details

Two identical bar magnets with a length 10 cm and weight 50 gm – weight are arranged freely with their like poles facing in a arranged vertical glass tube. The upper magnet hangs in the air above the lower one so that the distance between the nearest pole of the magnet

cover

Test Details

Earth's magnetic field may be supposed to be due to a small bar magnet located at the centre of the earth. If the magnetic field at a point on the magnetic equator is 0.3×10–4 T. Magnet moment of bar magnet is

cover

Test Details

 A short bar magnet is placed with its south pole towards geographical north. The neutral points are situated at a distance of 20 cm from the centre of the magnet. If BH=0.3 x 10-4 wb/m2 then the magnetic moment of the magnet is

cover

Test Details

If 540 is divided by 11, then remainder is

cover

Test Details

The digits at unit’s place in the number 171995 + 111995 – 71995 is

cover

Test Details

Earth's magnetic field may be supposed to be due to a small bar magnet located at the centre of the earth. If the magnetic field at a point on the magnetic equator is 0.3×10–4 T. Magnet moment of bar magnet is

cover

Test Details

The points scored by basket ball team in a series of matches are as follows: 15, 3, 8, 10, 22, 5, 27, 11, 12, 19, 18, 21, 13, 14. Its median is

cover

Test Details

A short bar magnet is placed with its south pole towards geographical north. The neutral points are situated at a distance of 20 cm from the centre of the magnet. If BH=0.3 x 10-4 wb/m2 then the magnetic moment of the magnet is

cover

Test Details

An ideal gas is taken around ABCA as shown in the above P-V diagram. The work done during a cycle is

cover

Test Details

If 150 J of heat is added to a system and the work done by the system is 110 J, then change in internal energy will be

cover

Test Details

One mole of Q2 gas having a volume equal to 22.4 litres at 0°C and 1 atmospheric pressure in compressed isothermally so that its volume reduces to 11.2 litres. The work done in this process is [MP PET 1993; BVP 2003]

cover

Test Details

In pressure-volume diagram given below, the isochoric, isothermal, and isobaric parts respectively, are

cover

Test Details

The P-V diagram of a system undergoing thermodynamic transformation is shown in figure. The work done on the system in going from A ® B ® C is 50 J and 20 cal heat is given to the system. The change in internal energy between A

cover

Test Details

A cyclic process ABCA is shown in the V-T diagram. Process on the P-V diagram is

cover

Test Details

The P-V diagram shows seven curved paths (connected by vertical paths) that can be followed by a gas. Which two of them should be parts of a closed cycle if the net work done by the gas is to be at its maximum value

cover

Test Details

An ideal gas of mass m in a state A goes to another state B via three different processes as shown in figure. If Q1, Q2, and Q3 denote the heat absorbed by the gas along the three paths, then       

cover

Test Details

110 J of heat is added to a gaseous system, whose internal energy change is 40 J, then the amount of external work done is

cover

Test Details

A thermodynamic system is taken through the cycle PQRSP process. The net work done by the system is

cover

Test Details

Four curves A, B, C and D are drawn in the adjoining figure for a given amount of gas. The curves which represent adiabatic and isothermal changes are

cover

Test Details

A cyclic process ABCA is shown in the V-T diagram. Process on the P-V diagram is

cover

Test Details

 If 150 J of heat is added to a system and the work done by the system is 110 J, then change in internal energy will be

cover

Test Details

The P-V diagram shows seven curved paths (connected by vertical paths) that can be followed by a gas. Which two of them should be parts of a closed cycle if the net work done by the gas is to be at its maximum value

cover

Test Details

110 J of heat is added to a gaseous system, whose internal energy change is 40 J, then the amount of external work done is

cover

Test Details

P-V plots for two gases during adiabatic process are shown in the figure. Plots 1 and 2 should correspond respectively to

cover

Test Details

One mole of Q2 gas having a volume equal to 22.4 litres at 0°C and 1 atmospheric pressure in compressed isothermally so that its volume reduces to 11.2 litres. The work done in this process is

cover

Test Details

The adjoining figure shows graph of pressure and volume of a gas at two temperatures T1 and T2. Which of the following interferences is correct

cover

Test Details

An experiment is carried on a fixed amount of gas at different temperatures and at high pressure such that it deviates from the ideal gas behaviour. The variation of PV/RT with P is shown in the diagram. The correct variation will correspond to       

cover

Test Details

At the top of a mountain a thermometer reads 7°C and a barometer reads 70 cm of Hg. At the bottom of the mountain these read 27°C and 76 cm of Hg respectively. Comparison of density of air at the top with that of bottom is

cover

Test Details

Two identical glass bulbs are interconnected by a thin glass tube. A gas is filled in these bulbs at N.T.P. If one bulb is placed in ice and another bulb is placed in hot bath, then the pressure of the gas becomes 1.5 times. The temperature of hot bath will be

cover

Test Details

The expansion of an ideal gas of mass m at a constant pressure P is given by the straight line D. Then the expansion of the same ideal gas of mass 2m at a pressure P/ 2 is given by the straight line

cover

Test Details

An ideal monoatomic gas is confined in a cylinder by a spring-loaded piston if cross-section 8 x 10-3m2. Initially the gas is at 300K and occupies a volume of 2.4 x 10-3m3 and the spring is in a relaxed state. The gas is heated by a small he

cover

Test Details

Pressure versus temperature graph of an ideal gas of equal number of moles of different volumes are plotted as shown in figure. Choose the correct alternative

cover

Test Details

The expansion of an ideal gas of mass m at a constant pressure P is given by the straight line D. Then the expansion of the same ideal gas of mass 2m at a pressure P/ 2 is given by the straight line

cover

Test Details

An ideal monoatomic gas is confined in a cylinder by a spring-loaded piston if cross-section 8 x 10-3m2. Initially the gas is at 300K and occupies a volume of 2.4 x 10-3m3 and the spring is in a relaxed state. The gas is heated by a small he

cover

Test Details

Two identical glass bulbs are interconnected by a thin glass tube. A gas is filled in these bulbs at N.T.P. If one bulb is placed in ice and another bulb is placed in hot bath, then the pressure of the gas becomes 1.5 times. The temperature of hot bath will be

cover

Test Details

At the top of a mountain a thermometer reads 7°C and a barometer reads 70 cm of Hg. At the bottom of the mountain these read 27°C and 76 cm of Hg respectively. Comparison of density of air at the top with that of bottom is

cover

Test Details

A liquid of density d is pumped by a pump P from situation (i) to situation (ii) as shown in the diagram. If the cross-section of each of the vessels is a, then the work done in pumping (neglecting friction effects) is

cover

Test Details

Two carts on horizontal straight rails are pushed apart by an explosion of a powder charge Q placed between the carts. Suppose the coefficients of friction between the carts and rails are identical. If the 200 kg cart travels a distance of 36 metres and stops, the di

cover

Test Details

The graph between the resistive force F acting on a body and the distance covered by the body is shown in the figure. The mass of the body is 25 kg and initial velocity is 2 m/s. When the distance covered by the body is 5m, its kinetic energy would be

cover

Test Details

Two cars of same mass are moving with same speed v on two different roads inclined at an angle θ with each other, as shown in the figure. At the junction of these roads the two cars collide inelastically and move simultaneously with the same speed. The speed of these cars would

cover

Test Details

Three particles A, B and C of equal mass are moving with the same velocity v along the medians of an equilateral triangle. These particle collide at the centre G of triangle. After collision A becomes stationary, B retraces its pat

cover

Test Details

A sphere of mass 0.1 kg is attached to a cord of 1m length. Starting from the height of its point of suspension this sphere hits a block of same mass at rest on a frictionless table, If the impact is elastic, then the kinetic energy of the block after the collision is  &

cover

Test Details

A block of mass 2kg is released from A on the track that is one quadrant of a circle of radius 1m. It slides down the track and reaches B with a speed of 4ms-1 and finally stops at C at a distance of 3m from B. The work

cover

Test Details

A bullet of mass m moving with a velocity v strikes a suspended wooden block of mass M as shown in the figure and sticks to it. If the block rises to a height h the initial velocity of the bullet is           

cover

Test Details

Six identical balls are lined in a straight groove made on a horizontal frictionless surface as shown. Two similar balls each moving with a velocity v collide with the row of 6 balls from left. What will happen

cover

Test Details

Two men with weights in the ratio 5 : 3 run up a staircase in times in the ratio 11 : 9. The ratio of power of first to that of second is

cover

Test Details

Six identical balls are lined in a straight groove made on a horizontal frictionless surface as shown. Two similar balls each moving with a velocity v collide with the row of 6 balls from left. What will happen

cover

Test Details

Two men with weights in the ratio 5 : 3 run up a staircase in times in the ratio 11 : 9. The ratio of power of first to that of second is

cover

Test Details

Two carts on horizontal straight rails are pushed apart by an explosion of a powder charge Q placed between the carts. Suppose the coefficients of friction between the carts and rails are identical. If the 200 kg cart travels a distance of 36 metres and stops, the di

cover

Test Details

A block of mass 2kg is released from A on the track that is one quadrant of a circle of radius 1m. It slides down the track and reaches B with a speed of 4ms-1 and finally stops at C at a distance of 3m from B. The work

cover

Test Details

A block of mass M slides along the sides of a bowl as shown in the figure. The walls of the bowl are frictionless and the base has coefficient of friction 0.2. If the block is released from the top of the side, which is 1.5 m high, where will the block come to rest ? Given th

cover

Test Details

A sphere of mass 0.1 kg is attached to a cord of 1m length. Starting from the height of its point of suspension this sphere hits a block of same mass at rest on a frictionless table, If the impact is elastic, then the kinetic energy of the block after the collision is

cover

Test Details

If W1, W2 and W3 represent the work done in moving a particle from A to B along three different paths 1, 2 and 3 respectively (as shown) in the gravitational field of a point mass m, find the correct relation

cover

Test Details

A metre stick, of mass 400 g, is pivoted at one end displaced through an angle 60o. The increase in its potential energy is

cover

Test Details

In the following circuit E1 = 4V, R1 = 2W                                  

cover

Test Details

In the following circuit diagram fig. the lengths of the wires AB and BC are same but the radius of AB is three times that of BC. The ratio of potential gradients at AB and BC will be

cover

Test Details

A beam of electron is emitted from filament and accelerated by an electric field as shown in figure. The two stops at the left ensure that the electric beam has uniform cross-section

cover

Test Details

The total current supplied to the circuit by the battery is

cover

Test Details

The equivalent resistance of the following diagram between A and B  is                   

cover

Test Details

In the given figure, when galvanometer shows no deflection, the current (in ampere) flowing through 5 ? resistance will be

cover

Test Details

Four resistances are connected in a circuit in the given figure. The electric current flowing through 4 ohm and 6 ohm resistance is respectively

cover

Test Details

In the circuit shown in the figure, the current through

cover

Test Details

In the steady state what will be the power dissipation in following circuit\

cover

Test Details

What will be the resultant magnetic field at origin due to four infinite length wires. If each wire produces magnetic field 'B' at origin

cover

Test Details

Figure shows the cress sectional view of the hollow cylindrical conductor with inner radius 'R' and outer radius '2R', cylinder carrying uniformly distributed current along it's axis. The magnetic induction at point 'P' at a distance

cover

Test Details

For the solenoid shown in figure. The magnetic field at point P is                                 

cover

Test Details

Electrons move at right angles to a magnetic field of 1.5×10−2Tesla with a speed of

cover

Test Details

In the following common emitter configuration an NPN transistor with current gain β = 100 is used. The output voltage of the amplifier will be

cover

Test Details

Two trains, one travelling at 90 m/s and the other travelling at 120 m/s, are moving towards each other on the same track. When they are 11 km apart, both drivers simultaneously apply brakes. If the brakes decelerate each train at the rate of

cover

Test Details

Water rises to a height of 10cm in capillary tube and mercury falls to a depth of 3.112cm in the same capillary tube. If the density of mercury is 13.6 and the angle of contact for mercury is 1350, the ratio of surface tension of water and mercury is

cover

Test Details

In a U-tube the radii of two columns are respectively r1 and r2 and if a liquid of density d filled in it has level difference of h then the surface tension of the liquid is

Coming Soon...