Refraction through Spherical Surfaces

# Refraction at convex spherical surface:

(a) When the object lies in the rarer medium and image formed is real:

Consider a spherical refracting surface (convex) of refraction index µ2. Let an object O is placed in a rarer medium of refraction index µ1.

A ray of light incident normally on the surface passes un deviated while the other ray which is incident at < i is refracted & bends towards the normal. At point I, a real image of O is formed.

Step I In ΔOAC, ∝ + (180 – i) + γ = 180 ==>  i = ∝ + γ      —(1)

In ΔIAC, r + β + (180 – γ) = 180 ==>  r = γ - β                      —(2)

Angles ∝, β, γ and small tan ∝ = ∝    

Step II, Now tan ∝ = (AN/NO) = (AN/PO) = (AN/-u)     or      ∝ = AN/-u   —(3)

tan β = (AN/NI) = (AN/PI) = (AN/υ)           or      β = AN/υ      —(4)

tan γ = (AN/NC) = (AN/PC) = (AN/R)        or      γ = AN/R      —(5)

Step III, Acc. to Snell’s law at pt. A

i & r are small ∴ sin i = i, sin r = r

sin i/sin r = 1µ2 = µ21

µ1 sin i = µ2 sin r

µ1 i = µ2 r

µ1(∝ + γ) = µ2(γ - β)        [using (1) & (2)

µ1 ∝ + µ1 γ = µ2 γ - µ2 β

µ1 ∝ + µ2 β = µ2 γ - µ1 γ

µ1 (AN/-u) + µ2 (AN/υ) = (µ2 - µ1) (AN/R)         [using 3, 4, 5]

∴ (-µ1/u) + (µ2/υ) = (µ2 - µ1/R)

(b) When the object lies in the rarer medium and the image formed is virtual:

Let o → Point object placed on principle axis and lying close to the pole of the refracting surface.

In ΔOAC, ∝ + (180 – i) + γ = 180

i = ∝ + γ

In ΔIAC, β + (180 – r) + γ = 180

r = β + γ

Now tan ∝ = (AN/NO) = (AN/PO) = (AN/-u)       or      ∝ = (AN/-u)

tan β = (AN/NI) = (AN/PI) = (AN/-υ)         or      β = (AN/-υ)

tan γ = (AN/NC) = (AN/PC) = (AN/R)        or      γ = AN/R     

By Snell’s law at A,

sin i/sin r = (µ21) or µ1 sin i = µ2 sin r

Or µ1 i = µ2 r

Or µ1 (∝ + γ) = µ2 (β + γ)

Or µ1 ∝ + µ1 γ = µ2 β + µ2 γ

Or µ1 ∝ - µ2 β = (µ2 - µ1) γ

Or µ1.(AN/-u) - µ2.(An/-υ) = (µ2 - µ1)AN/R

Or (-µ1/u) + (µ2/υ) = (µ2 - µ1)/R

(c) When the object lies in the denser medium:

Let o Δ Point object lying in the denser medium

A ray of light from the object falling normally on the refracting surface passes undeviated. Another ray falling at pt. A bends away from the normal. The two rays appear to come from point I. ∴I is the virtual image of point object O.

In ΔOAC, i + (180° – ∝) + γ = 180° ==>  i = ∝ - γ

In ΔIAC, r + (180° – β) + γ = 180° ==>  r = β - γ

PO = -u

the distance of object is measured against the incident ray

Now tan ∝ = (AN/NO) = (AN/PO) = (AN/-u)       or      ∝ = (AN/-u)

tan β = (AN/NI) = (AN/PI) = (AN/-υ)         or      β = (AN/-υ)

tan γ = (AN/NC) = (AN/PC) = (AN/-R)       or      γ = AN/-R   

By Snell’s law at pt. A,

sin i/sin r = 2µ1 = (µ12) or µ2 i = µ1 r

Or µ2 (∝ - γ) = µ2 (β - γ)

Or µ2 ∝ - µ2 γ = µ1 β - µ1 γ)

Or µ2 ∝ - µ1 β = (µ2 - µ1) γ

Or µ2.(AN/-u) - µ1.(AN/-υ) = (µ2 - µ1) (AN/-R)

Or (-µ2/u) + (µ1/υ) = (µ1 - µ2)/R

Note- If we know the relation for light rays from rarer → denser

Then the relation for light ray from denser → rarer can be obtained by replacing µ2 by µ1 & µ1 by µ2.

# Refraction at a concave spherical surface:

(Note: A virtual image is formed always in a concave S.R.S)

(a) When the object lies in the rarer medium:

Let o → Point object lying in the rarer medium and situated on the principal axis.

In ΔOAC, i + (180° – ∝) + γ = 180° ==>  i = ∝ - γ

In ΔIAC, r + (180° – β) + γ = 180° ==>  r = β - γ

Now tan ∝ = (AN/NO) = (AN/PO) = (AN/-u)       or      ∝ = (AN/-u)

tan β = (AN/NI) = (AN/PI) = (AN/-υ)         or      β = (AN/-υ)

tan γ = (AN/NC) = (AN/PC) = (AN/-R)       or      γ = AN/-R

By Snell’s law at A, (sin i/ sin r) = 1µ2 = µ21

Or µ1 sin i = µ2 sin r

Or µ1 i = µ2 r

Or µ1 (∝ - γ) = µ2 (β - γ)

Or µ1 ∝ - µ1 γ = µ2 β - µ2 γ

Or µ1 ∝ - µ2 β = (µ1 - µ2) γ

Or µ1.(AN/-u) - µ2.(AN/-υ) = (µ1 - µ2)AN/-R

Or (-µ1/u) + (µ2/υ) = µ2 - µ1/R

(b) When the object lies in the denser medium:

Let o → Point object lying in the denser medium 

In ΔOAC, ∝ + (180° - i) + γ = 180°

i = ∝ + γ

In ΔIAC,

β + (180° - r) + γ = 180°

r = β + γ

Now tan ∝ = (AN/NO) = (AN/PO) = (AN/-u)       or      ∝ = (AN/-u)

tan β = (AN/NI) = (AN/PI) = (AN/-υ)         or      β = (AN/-υ)

tan γ = (AN/NC) = (AN/PC) = (AN/R)        or      γ = AN/R

By Snell’s law at A,

  (sin i/sin r) = 2μ1 = (μ12)

Or       μ2 i = μ1 r

Or       μ2 (∝ +γ) = μ1 (β+γ)

Or       μ2 ∝ + μ2γ = μ1β+ μ1 γ

Or       μ2 ∝ - μ1β = (μ1- μ2) γ 

Or       μ2.(AN/-u)- μ1(AN/-v) = (μ1- μ2)AN/R

Or      (-μ2/u)+ (μ1/v) = ((μ1- μ2)/R)

Note: (i) When the object lies in the rarer medium, then both convex & concave faces, the formula is

(-µ1/u) + (µ2/v) = (µ2 - µ1/R)

(ii) When object lies in denser medium, the for molar become

2/u) + (µ1/v) = (µ1 - µ2/R)

 

 

 

Related Keywords