NCERT Solution Exercise 4
Question 1: Write Minors and Cofactors of the elements of following determinants:
Answer
(i) The given determinant is .
Minor of element aij is Mij.
∴ M11 = minor of element a11 = 3
M12 = minor of element a12 = 0
M21 = minor of element a21 = −4
M22 = minor of element a22 = 2
Cofactor of aij is Aij = (−1)i + j Mij.
(ii) The given determinant is .
Minor of element aij is Mij.
M11 = minor of element a11 = d
M12 = minor of element a12 = b
M21 = minor of element a21 = c
M22 = minor of element a22 = a
Cofactor of aij is Aij = (−1)i + j Mij.
A11 = (−1)1+1 M11 = (−1)2 (d) = d
A12 = (−1)1+2 M12 = (−1)3 (b) = −b
A21 = (−1)2+1 M21 = (−1)3 (c) = −c
A22 = (−1)2+2 M22 = (−1)4 (a) = a
Question 2:
Answer
(i) The given determinant is .
By the definition of minors and cofactors, we have:
M11 = minor of a11=
M12 = minor of a12=
M13 = minor of a13 =
M21 = minor of a21 =
M22 = minor of a22 =
M23 = minor of a23 =
M31 = minor of a31=
M32 = minor of a32 =
M33 = minor of a33 =
A11 = cofactor of a11= (−1)1+1 M11 = 1
A12 = cofactor of a12 = (−1)1+2 M12 = 0
A13 = cofactor of a13 = (−1)1+3 M13 = 0
A21 = cofactor of a21 = (−1)2+1 M21 = 0
A22 = cofactor of a22 = (−1)2+2 M22 = 1
A23 = cofactor of a23 = (−1)2+3 M23 = 0
A31 = cofactor of a31 = (−1)3+1 M31 = 0
A32 = cofactor of a32 = (−1)3+2 M32 = 0
A33 = cofactor of a33 = (−1)3+3 M33 = 1
(ii) The given determinant is .
By definition of minors and cofactors, we have:
M11 = minor of a11=
M12 = minor of a12=
M13 = minor of a13 =
M21 = minor of a21 =
M22 = minor of a22 =
M23 = minor of a23 =
M31 = minor of a31=
M32 = minor of a32 =
M33 = minor of a33 =
A11 = cofactor of a11= (−1)1+1 M11 = 11
A12 = cofactor of a12 = (−1)1+2 M12 = −6
A13 = cofactor of a13 = (−1)1+3 M13 = 3
A21 = cofactor of a21 = (−1)2+1 M21 = 4
A22 = cofactor of a22 = (−1)2+2 M22 = 2
A23 = cofactor of a23 = (−1)2+3 M23 = −1
A31 = cofactor of a31 = (−1)3+1 M31 = −20
A32 = cofactor of a32 = (−1)3+2 M32 = 13
A33 = cofactor of a33 = (−1)3+3 M33 = 5
Question 3:
Using Cofactors of elements of second row, evaluate .
Answer
The given determinant is .
We have:
∴ A21 = cofactor of a21 = (−1)2+1 M21 = 7
∴ A22 = cofactor of a22 = (−1)2+2 M22 = 7
∴ A23 = cofactor of a23 = (−1)2+3 M23 = −7
We know that Δ is equal to the sum of the product of the elements of the second row with their corresponding cofactors.
∴ Δ = a21A21 + a22A22 + a23A23 = 2(7) + 0(7) + 1(−7) = 14 − 7 = 7
Question 4:
Using Cofactors of elements of third column, evaluate
Answer
The given determinant is .
We have:
∴ A13 = cofactor of a13 = (−1)1+3 M13 = (z − y)
A23 = cofactor of a23 = (−1)2+3 M23 = − (z − x) = (x − z)
A33 = cofactor of a33 = (−1)3+3 M33 = (y − x)
We know that Δ is equal to the sum of the product of the elements of the second row with their corresponding cofactors.
∴ Δ = a13A13 + a23A23 + a33A33
= yz(z - y) + zx(x - z) + xy(y - x)
= yz2 – y2z + x2z – xz2 + xy2 – x2y
= (x2z – y2z) + (yz2 – xz2) + (xy2 – x2y)
= z (x2 – y2) + z2 (y – x) + xy (y – x)
= (x - y) [zx + zy – z2 - xy]
= (x - y) [z (x - z) + y (z - x)]
= (x - y) (z - x)[-z + y]
= (x - y) (y – z) (z - x)
Hence, Δ = (x – y) (y - z) (z - x).
Question 5: For the matrices A and B, verify that (AB)′ = B’A’ where
Answer
Hence, we have verified that (AB)’ = B’A’.
Hence, we have verified that (AB)’ = B’A’.