array(172) { [0]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "10" ["ques_text"]=> string(81) "

The pressure of 2 moles of ideal gas at 546 K having volume 44.8 L is

" ["question_id"]=> string(3) "132" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(3) "525" ["question_id"]=> string(3) "132" ["opt_desc"]=> string(17) "

2 atm

" } [1]=> array(3) { ["option_id"]=> string(3) "526" ["question_id"]=> string(3) "132" ["opt_desc"]=> string(17) "

3 atm

" } [2]=> array(3) { ["option_id"]=> string(3) "527" ["question_id"]=> string(3) "132" ["opt_desc"]=> string(17) "

4 atm

" } [3]=> array(3) { ["option_id"]=> string(3) "528" ["question_id"]=> string(3) "132" ["opt_desc"]=> string(17) "

1 atm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "136" ["question_id"]=> string(3) "132" ["option_id"]=> string(3) "525" } } } [1]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "10" ["ques_text"]=> string(162) "

The pressure of a 1:4 mixture of dihydrogen and dioxygen enclosed in a vessel is one atmosphere. What would be the partial pressure of dioxygen? 

" ["question_id"]=> string(3) "138" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(3) "549" ["question_id"]=> string(3) "138" ["opt_desc"]=> string(42) "

0.8 × 105 atm

" } [1]=> array(3) { ["option_id"]=> string(3) "550" ["question_id"]=> string(3) "138" ["opt_desc"]=> string(33) "

0.008 Nm-2

" } [2]=> array(3) { ["option_id"]=> string(3) "551" ["question_id"]=> string(3) "138" ["opt_desc"]=> string(40) "

8 × 10 Nm-2

" } [3]=> array(3) { ["option_id"]=> string(3) "552" ["question_id"]=> string(3) "138" ["opt_desc"]=> string(20) "

0.25 atm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "142" ["question_id"]=> string(3) "138" ["option_id"]=> string(3) "551" } } } [2]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "10" ["ques_text"]=> string(100) "

The volume of 2.8 g of carbon monoxide at 27° C and 0.821 atm pressure is

" ["question_id"]=> string(3) "139" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(3) "553" ["question_id"]=> string(3) "139" ["opt_desc"]=> string(24) "

3.0 λ

" } [1]=> array(3) { ["option_id"]=> string(3) "554" ["question_id"]=> string(3) "139" ["opt_desc"]=> string(22) "

3 λ

" } [2]=> array(3) { ["option_id"]=> string(3) "555" ["question_id"]=> string(3) "139" ["opt_desc"]=> string(24) "

0.3 λ

" } [3]=> array(3) { ["option_id"]=> string(3) "556" ["question_id"]=> string(3) "139" ["opt_desc"]=> string(24) "

1.5 λ

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "143" ["question_id"]=> string(3) "139" ["option_id"]=> string(3) "554" } } } [3]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "28" ["ques_text"]=> string(411) "

If P represents radiation pressure, C represents speed of light and Q represents radiation energy striking a unit area per second, then non-zero integers x, y and z such that P x Q y C z is dimensionless, are

 

" ["question_id"]=> string(3) "384" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "1527" ["question_id"]=> string(3) "384" ["opt_desc"]=> string(33) "

x = 1 , y = 1, z = -1

" } [1]=> array(3) { ["option_id"]=> string(4) "1528" ["question_id"]=> string(3) "384" ["opt_desc"]=> string(28) "

x=1 , y= -1, z=1

" } [2]=> array(3) { ["option_id"]=> string(4) "1529" ["question_id"]=> string(3) "384" ["opt_desc"]=> string(38) "

 x = -1 , y= 1 , z= 1

" } [3]=> array(3) { ["option_id"]=> string(4) "1530" ["question_id"]=> string(3) "384" ["opt_desc"]=> string(29) "

x= 1 , y= 1 ,z =1

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "399" ["question_id"]=> string(3) "384" ["option_id"]=> string(4) "1528" } } } [4]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "29" ["ques_text"]=> string(115) "

The  pressure  of 107  dyne/cm2  is  equivalent  to

" ["question_id"]=> string(3) "394" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "1567" ["question_id"]=> string(3) "394" ["opt_desc"]=> string(42) "

105 N/m2

" } [1]=> array(3) { ["option_id"]=> string(4) "1568" ["question_id"]=> string(3) "394" ["opt_desc"]=> string(42) "

106 N/m2

" } [2]=> array(3) { ["option_id"]=> string(4) "1569" ["question_id"]=> string(3) "394" ["opt_desc"]=> string(42) "

107 N/m2

" } [3]=> array(3) { ["option_id"]=> string(4) "1570" ["question_id"]=> string(3) "394" ["opt_desc"]=> string(42) "

108 N/m2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "409" ["question_id"]=> string(3) "394" ["option_id"]=> string(4) "1568" } } } [5]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "72" ["ques_text"]=> string(102) "

The relative lowering of vapour pressure is equal to the ratio between the number of 

" ["question_id"]=> string(3) "735" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "2913" ["question_id"]=> string(3) "735" ["opt_desc"]=> string(53) "

Solute molecules to the solvent molecules

" } [1]=> array(3) { ["option_id"]=> string(4) "2914" ["question_id"]=> string(3) "735" ["opt_desc"]=> string(69) "

Solute molecules to the total molecules in Solution 

" } [2]=> array(3) { ["option_id"]=> string(4) "2915" ["question_id"]=> string(3) "735" ["opt_desc"]=> string(68) "

Solvent molecules to the total molecules in the solution

" } [3]=> array(3) { ["option_id"]=> string(4) "2916" ["question_id"]=> string(3) "735" ["opt_desc"]=> string(71) "

Solvent molecules to the total number of ions of the solute

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "758" ["question_id"]=> string(3) "735" ["option_id"]=> string(4) "2914" } } } [6]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "72" ["ques_text"]=> string(92) "

A 25°C, the highest osmotic pressure is exhibited by 0.1 M solution of 

" ["question_id"]=> string(3) "741" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "2937" ["question_id"]=> string(3) "741" ["opt_desc"]=> string(28) "

CaCl2

" } [1]=> array(3) { ["option_id"]=> string(4) "2938" ["question_id"]=> string(3) "741" ["opt_desc"]=> string(15) "

KCl

" } [2]=> array(3) { ["option_id"]=> string(4) "2939" ["question_id"]=> string(3) "741" ["opt_desc"]=> string(20) "

Glusocse

" } [3]=> array(3) { ["option_id"]=> string(4) "2940" ["question_id"]=> string(3) "741" ["opt_desc"]=> string(16) "

Urea

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "764" ["question_id"]=> string(3) "741" ["option_id"]=> string(4) "2937" } } } [7]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "72" ["ques_text"]=> string(113) "

According to Raoult’s law, relative lowering of vapour pressure of a solution is equal to 

" ["question_id"]=> string(3) "743" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "2945" ["question_id"]=> string(3) "743" ["opt_desc"]=> string(27) "

Moles of solute

" } [1]=> array(3) { ["option_id"]=> string(4) "2946" ["question_id"]=> string(3) "743" ["opt_desc"]=> string(28) "

Moles of solvent

" } [2]=> array(3) { ["option_id"]=> string(4) "2947" ["question_id"]=> string(3) "743" ["opt_desc"]=> string(36) "

Moles fraction of solute

" } [3]=> array(3) { ["option_id"]=> string(4) "2948" ["question_id"]=> string(3) "743" ["opt_desc"]=> string(37) "

Moles fraction of solvent

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "766" ["question_id"]=> string(3) "743" ["option_id"]=> string(4) "2947" } } } [8]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "76" ["ques_text"]=> string(180) "

 Identify the correct statement for change of Gibb’s energy for a system (?Gsystem) at constant temperature and pressure. [2006]

" ["question_id"]=> string(3) "799" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "3165" ["question_id"]=> string(3) "799" ["opt_desc"]=> string(75) "

 If ?Gsystem > 0, the process is spontaneous

" } [1]=> array(3) { ["option_id"]=> string(4) "3166" ["question_id"]=> string(3) "799" ["opt_desc"]=> string(75) "

If ?Gsystem = 0, the system has attained equilibrium

" } [2]=> array(3) { ["option_id"]=> string(4) "3167" ["question_id"]=> string(3) "799" ["opt_desc"]=> string(98) "

 If ?Gsystem = 0, the system is still moving in a particular direction

" } [3]=> array(3) { ["option_id"]=> string(4) "3168" ["question_id"]=> string(3) "799" ["opt_desc"]=> string(73) "

If ?Gsystem < 0, the process is not spontaneous

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(3) "823" ["question_id"]=> string(3) "799" ["option_id"]=> string(4) "3166" } } } [9]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "77" ["ques_text"]=> string(335) "

The molecular weight of O2 and SO2 are 32 and 64 respectively. At 15°C and 150 mmHg pressure, 1 L of O2 contanis ‘N’ molecules. The number of molecules in 2 L of SO2 under the same conditions of temperature and pressure will be [1990]

" ["question_id"]=> string(4) "1231" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "4881" ["question_id"]=> string(4) "1231" ["opt_desc"]=> string(15) "

N/2

" } [1]=> array(3) { ["option_id"]=> string(4) "4882" ["question_id"]=> string(4) "1231" ["opt_desc"]=> string(13) "

N

" } [2]=> array(3) { ["option_id"]=> string(4) "4883" ["question_id"]=> string(4) "1231" ["opt_desc"]=> string(14) "

2N

" } [3]=> array(3) { ["option_id"]=> string(4) "4884" ["question_id"]=> string(4) "1231" ["opt_desc"]=> string(14) "

4N

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1257" ["question_id"]=> string(4) "1231" ["option_id"]=> string(4) "4883" } } } [10]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "116" ["ques_text"]=> string(179) "

Pressure remaining the same, the volume of a given mass of an ideal gas increases for every degree centigrade rise in temperature by definite fraction on its volume at

" ["question_id"]=> string(4) "1288" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "5081" ["question_id"]=> string(4) "1288" ["opt_desc"]=> string(26) "

0oC

" } [1]=> array(3) { ["option_id"]=> string(4) "5082" ["question_id"]=> string(4) "1288" ["opt_desc"]=> string(25) "

Absolute zero

" } [2]=> array(3) { ["option_id"]=> string(4) "5083" ["question_id"]=> string(4) "1288" ["opt_desc"]=> string(36) "

Its critical temperature

" } [3]=> array(3) { ["option_id"]=> string(4) "5084" ["question_id"]=> string(4) "1288" ["opt_desc"]=> string(41) "

Its Boyle’s temperature

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1318" ["question_id"]=> string(4) "1288" ["option_id"]=> string(4) "5081" } } } [11]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "116" ["ques_text"]=> string(151) "

  At which one of the following temperature pressure conditions, the deviation of a gas from ideal behavior is expected to be minimum?

" ["question_id"]=> string(4) "1301" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "5133" ["question_id"]=> string(4) "1301" ["opt_desc"]=> string(33) "

350  K and 3 atm

" } [1]=> array(3) { ["option_id"]=> string(4) "5134" ["question_id"]=> string(4) "1301" ["opt_desc"]=> string(27) "

550 K and 1 atm

" } [2]=> array(3) { ["option_id"]=> string(4) "5135" ["question_id"]=> string(4) "1301" ["opt_desc"]=> string(27) "

250 K and 4 atm

" } [3]=> array(3) { ["option_id"]=> string(4) "5136" ["question_id"]=> string(4) "1301" ["opt_desc"]=> string(27) "

450 K and 2 atm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1331" ["question_id"]=> string(4) "1301" ["option_id"]=> string(4) "5134" } } } [12]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "120" ["ques_text"]=> string(41) "

The S.I. unit of pressure is:

" ["question_id"]=> string(4) "1377" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "5437" ["question_id"]=> string(4) "1377" ["opt_desc"]=> string(16) "

Torr

" } [1]=> array(3) { ["option_id"]=> string(4) "5438" ["question_id"]=> string(4) "1377" ["opt_desc"]=> string(22) "

Atmosphere

" } [2]=> array(3) { ["option_id"]=> string(4) "5439" ["question_id"]=> string(4) "1377" ["opt_desc"]=> string(18) "

Pascal

" } [3]=> array(3) { ["option_id"]=> string(4) "5440" ["question_id"]=> string(4) "1377" ["opt_desc"]=> string(34) "

Dynes per square metre

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1410" ["question_id"]=> string(4) "1377" ["option_id"]=> string(4) "5439" } } } [13]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "120" ["ques_text"]=> string(190) "

Two flasks A and B of equal volume contain 2 g of H2 and 2 g of N2 respectively at the same temperature and pressure. The number of molecules in flask A is:

" ["question_id"]=> string(4) "1384" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "5465" ["question_id"]=> string(4) "1384" ["opt_desc"]=> string(54) "

Same as the number of molecules in flask B

" } [1]=> array(3) { ["option_id"]=> string(4) "5466" ["question_id"]=> string(4) "1384" ["opt_desc"]=> string(51) "

Half the number of molecules in flask B

" } [2]=> array(3) { ["option_id"]=> string(4) "5467" ["question_id"]=> string(4) "1384" ["opt_desc"]=> string(54) "

7 times the number of molecules in flask B

" } [3]=> array(3) { ["option_id"]=> string(4) "5468" ["question_id"]=> string(4) "1384" ["opt_desc"]=> string(55) "

14 times the number of molecules in flask B

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1417" ["question_id"]=> string(4) "1384" ["option_id"]=> string(4) "5467" } } } [14]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "124" ["ques_text"]=> string(663) "

Adrenalin hormone increases :                                                                          (BHU 2008)

  1. Blood Pressure
  2. Heart beat
  3. Blood glucose level
  4. Arteriosclerosis
" ["question_id"]=> string(4) "1433" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "5661" ["question_id"]=> string(4) "1433" ["opt_desc"]=> string(33) "

1,2 and 3 are correct

" } [1]=> array(3) { ["option_id"]=> string(4) "5662" ["question_id"]=> string(4) "1433" ["opt_desc"]=> string(31) "

1 and 2 are correct

" } [2]=> array(3) { ["option_id"]=> string(4) "5663" ["question_id"]=> string(4) "1433" ["opt_desc"]=> string(31) "

2 and 4 are correct

" } [3]=> array(3) { ["option_id"]=> string(4) "5664" ["question_id"]=> string(4) "1433" ["opt_desc"]=> string(31) "

1 and 3 are correct

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1466" ["question_id"]=> string(4) "1433" ["option_id"]=> string(4) "5662" } } } [15]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "129" ["ques_text"]=> string(505) "

Osmotic pressure in the leaf cells is positive during                                                                          (1997)

" ["question_id"]=> string(4) "1500" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "5927" ["question_id"]=> string(4) "1500" ["opt_desc"]=> string(35) "

excessive transpiration

" } [1]=> array(3) { ["option_id"]=> string(4) "5928" ["question_id"]=> string(4) "1500" ["opt_desc"]=> string(29) "

low transpiration

" } [2]=> array(3) { ["option_id"]=> string(4) "5929" ["question_id"]=> string(4) "1500" ["opt_desc"]=> string(32) "

excessive absorption

" } [3]=> array(3) { ["option_id"]=> string(4) "5930" ["question_id"]=> string(4) "1500" ["opt_desc"]=> string(21) "

guttation

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1533" ["question_id"]=> string(4) "1500" ["option_id"]=> string(4) "5927" } } } [16]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(2) "13" ["ques_text"]=> string(507) "

The molecular weight of O2 and SO2 are 32 and 64 respectively. At 15 degree C and 150 mmHg pressure, 1 L of O2 contains ‘N’ molecules. The number of molecules in 2 L of SO2 under the same conditions of temperature and pressure will be                                  (1990)

" ["question_id"]=> string(4) "1556" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6151" ["question_id"]=> string(4) "1556" ["opt_desc"]=> string(15) "

N/2

" } [1]=> array(3) { ["option_id"]=> string(4) "6152" ["question_id"]=> string(4) "1556" ["opt_desc"]=> string(13) "

N

" } [2]=> array(3) { ["option_id"]=> string(4) "6153" ["question_id"]=> string(4) "1556" ["opt_desc"]=> string(14) "

2N

" } [3]=> array(3) { ["option_id"]=> string(4) "6154" ["question_id"]=> string(4) "1556" ["opt_desc"]=> string(14) "

4N

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1593" ["question_id"]=> string(4) "1556" ["option_id"]=> string(4) "6153" } } } [17]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "136" ["ques_text"]=> string(507) "

Adrenalin hormone increases :                                                (BHU 2008)

  1. Blood Pressure
  2. Heart beat
  3. Blood glucose level
  4. Arteriosclerosis
" ["question_id"]=> string(4) "1614" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6383" ["question_id"]=> string(4) "1614" ["opt_desc"]=> string(33) "

1,2 and 3 are correct

" } [1]=> array(3) { ["option_id"]=> string(4) "6384" ["question_id"]=> string(4) "1614" ["opt_desc"]=> string(37) "

 1 and 2 are correct

" } [2]=> array(3) { ["option_id"]=> string(4) "6385" ["question_id"]=> string(4) "1614" ["opt_desc"]=> string(31) "

2 and 4 are correct

" } [3]=> array(3) { ["option_id"]=> string(4) "6386" ["question_id"]=> string(4) "1614" ["opt_desc"]=> string(31) "

1 and 3 are correct

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1651" ["question_id"]=> string(4) "1614" ["option_id"]=> string(4) "6384" } } } [18]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "139" ["ques_text"]=> string(334) "

The molecular weight of O2 and SO2 are 32 and 64 respectively. At 15°C and 150 mmHg pressure, 1 L of O2 contanis ‘N’ molecules. The number of molecules in 2 L of SO2 under the same conditions of temperature and pressure will be [1990]

" ["question_id"]=> string(4) "1650" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6527" ["question_id"]=> string(4) "1650" ["opt_desc"]=> string(15) "

N/2

" } [1]=> array(3) { ["option_id"]=> string(4) "6528" ["question_id"]=> string(4) "1650" ["opt_desc"]=> string(13) "

N

" } [2]=> array(3) { ["option_id"]=> string(4) "6529" ["question_id"]=> string(4) "1650" ["opt_desc"]=> string(15) "

2 N

" } [3]=> array(3) { ["option_id"]=> string(4) "6530" ["question_id"]=> string(4) "1650" ["opt_desc"]=> string(15) "

4 N

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1687" ["question_id"]=> string(4) "1650" ["option_id"]=> string(4) "6529" } } } [19]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "139" ["ques_text"]=> string(53) "

Dimension of pressure are same as that of

" ["question_id"]=> string(4) "1654" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6543" ["question_id"]=> string(4) "1654" ["opt_desc"]=> string(18) "

Energy

" } [1]=> array(3) { ["option_id"]=> string(4) "6544" ["question_id"]=> string(4) "1654" ["opt_desc"]=> string(17) "

Force

" } [2]=> array(3) { ["option_id"]=> string(4) "6545" ["question_id"]=> string(4) "1654" ["opt_desc"]=> string(33) "

Force per unit volume

" } [3]=> array(3) { ["option_id"]=> string(4) "6546" ["question_id"]=> string(4) "1654" ["opt_desc"]=> string(34) "

Energy per unit volume

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1691" ["question_id"]=> string(4) "1654" ["option_id"]=> string(4) "6546" } } } [20]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "146" ["ques_text"]=> string(114) "

 A gas occupies 300 ml at 27°C and 740 mm pressure. Calculate its volume at S.T.P?

" ["question_id"]=> string(4) "1750" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6923" ["question_id"]=> string(4) "1750" ["opt_desc"]=> string(20) "

0.3650 L

" } [1]=> array(3) { ["option_id"]=> string(4) "6924" ["question_id"]=> string(4) "1750" ["opt_desc"]=> string(20) "

0.2658 L

" } [2]=> array(3) { ["option_id"]=> string(4) "6925" ["question_id"]=> string(4) "1750" ["opt_desc"]=> string(23) "

 200 L

" } [3]=> array(3) { ["option_id"]=> string(4) "6926" ["question_id"]=> string(4) "1750" ["opt_desc"]=> string(17) "

365 L

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1786" ["question_id"]=> string(4) "1750" ["option_id"]=> string(4) "6924" } } } [21]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "146" ["ques_text"]=> string(179) "

Pressure remaining the same, the volume of a given mass of an ideal gas increases for every degree centigrade rise in temperature by definite fraction on its volume at

" ["question_id"]=> string(4) "1751" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6927" ["question_id"]=> string(4) "1751" ["opt_desc"]=> string(26) "

0oC

" } [1]=> array(3) { ["option_id"]=> string(4) "6928" ["question_id"]=> string(4) "1751" ["opt_desc"]=> string(25) "

Absolute zero

" } [2]=> array(3) { ["option_id"]=> string(4) "6929" ["question_id"]=> string(4) "1751" ["opt_desc"]=> string(36) "

Its critical temperature

" } [3]=> array(3) { ["option_id"]=> string(4) "6930" ["question_id"]=> string(4) "1751" ["opt_desc"]=> string(41) "

Its Boyle’s temperature

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1787" ["question_id"]=> string(4) "1751" ["option_id"]=> string(4) "6927" } } } [22]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "146" ["ques_text"]=> string(135) "

The density of a mixture of O2 and N2 at STP is 1.3 g/L. Calculate partial pressure of O2?

" ["question_id"]=> string(4) "1752" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6931" ["question_id"]=> string(4) "1752" ["opt_desc"]=> string(26) "

 0.50 atm

" } [1]=> array(3) { ["option_id"]=> string(4) "6932" ["question_id"]=> string(4) "1752" ["opt_desc"]=> string(20) "

0.72 atm

" } [2]=> array(3) { ["option_id"]=> string(4) "6933" ["question_id"]=> string(4) "1752" ["opt_desc"]=> string(20) "

0.26 atm

" } [3]=> array(3) { ["option_id"]=> string(4) "6934" ["question_id"]=> string(4) "1752" ["opt_desc"]=> string(20) "

0.18 atm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1788" ["question_id"]=> string(4) "1752" ["option_id"]=> string(4) "6933" } } } [23]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "146" ["ques_text"]=> string(260) "

Two gases A and B having molecular weights 60 and 45 respectively are enclosed in a vessel. The weight of A is 0.5 g and that of B is 0.2 g. The total pressure of the mixture is 750 mm. Calculate the partial pressure of the two gases. (in mm of Hg)

" ["question_id"]=> string(4) "1764" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "6979" ["question_id"]=> string(4) "1764" ["opt_desc"]=> string(20) "

375, 150

" } [1]=> array(3) { ["option_id"]=> string(4) "6980" ["question_id"]=> string(4) "1764" ["opt_desc"]=> string(24) "

535.7, 214.9

" } [2]=> array(3) { ["option_id"]=> string(4) "6981" ["question_id"]=> string(4) "1764" ["opt_desc"]=> string(20) "

490, 260

" } [3]=> array(3) { ["option_id"]=> string(4) "6982" ["question_id"]=> string(4) "1764" ["opt_desc"]=> string(20) "

350, 400

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1800" ["question_id"]=> string(4) "1764" ["option_id"]=> string(4) "6981" } } } [24]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "146" ["ques_text"]=> string(245) "

O2 is collected over water at 20°C. The pressure inside shown by the gas is 740 mm of Hg. What is the pressure due to O2 alone if vapour pressure of H2O is 18 mm at 20°C?

" ["question_id"]=> string(4) "1773" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "7015" ["question_id"]=> string(4) "1773" ["opt_desc"]=> string(18) "

740 mm

" } [1]=> array(3) { ["option_id"]=> string(4) "7016" ["question_id"]=> string(4) "1773" ["opt_desc"]=> string(18) "

370 mm

" } [2]=> array(3) { ["option_id"]=> string(4) "7017" ["question_id"]=> string(4) "1773" ["opt_desc"]=> string(24) "

 722 mm

" } [3]=> array(3) { ["option_id"]=> string(4) "7018" ["question_id"]=> string(4) "1773" ["opt_desc"]=> string(18) "

758 mm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1809" ["question_id"]=> string(4) "1773" ["option_id"]=> string(4) "7017" } } } [25]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "146" ["ques_text"]=> string(214) "

Calculate the relative rates of diffusion of 235UF6 and 238UF6 in the gaseous state (At. Mass of F = 19) under the same condition of temperature and pressure?

" ["question_id"]=> string(4) "1775" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "7023" ["question_id"]=> string(4) "1775" ["opt_desc"]=> string(132) "

235:238

" } [1]=> array(3) { ["option_id"]=> string(4) "7024" ["question_id"]=> string(4) "1775" ["opt_desc"]=> string(162) "

235:238

" } [2]=> array(3) { ["option_id"]=> string(4) "7025" ["question_id"]=> string(4) "1775" ["opt_desc"]=> string(192) "

238:235

" } [3]=> array(3) { ["option_id"]=> string(4) "7026" ["question_id"]=> string(4) "1775" ["opt_desc"]=> string(151) "

1.0043:1

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "1811" ["question_id"]=> string(4) "1775" ["option_id"]=> string(4) "7026" } } } [26]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "177" ["ques_text"]=> string(86) "

A 25°C, the highest osmotic pressure is exhibited by 0.1 M solution of

" ["question_id"]=> string(4) "2200" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "8723" ["question_id"]=> string(4) "2200" ["opt_desc"]=> string(28) "

CaCl2

" } [1]=> array(3) { ["option_id"]=> string(4) "8724" ["question_id"]=> string(4) "2200" ["opt_desc"]=> string(15) "

KCl

" } [2]=> array(3) { ["option_id"]=> string(4) "8725" ["question_id"]=> string(4) "2200" ["opt_desc"]=> string(19) "

Glucose

" } [3]=> array(3) { ["option_id"]=> string(4) "8726" ["question_id"]=> string(4) "2200" ["opt_desc"]=> string(16) "

Urea

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2236" ["question_id"]=> string(4) "2200" ["option_id"]=> string(4) "8723" } } } [27]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "177" ["ques_text"]=> string(107) "

According to Raoult’s law, relative lowering of vapour pressure of a solution is equal to

" ["question_id"]=> string(4) "2204" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "8739" ["question_id"]=> string(4) "2204" ["opt_desc"]=> string(27) "

Moles of solute

" } [1]=> array(3) { ["option_id"]=> string(4) "8740" ["question_id"]=> string(4) "2204" ["opt_desc"]=> string(28) "

Moles of solvent

" } [2]=> array(3) { ["option_id"]=> string(4) "8741" ["question_id"]=> string(4) "2204" ["opt_desc"]=> string(35) "

Mole fraction of solute

" } [3]=> array(3) { ["option_id"]=> string(4) "8742" ["question_id"]=> string(4) "2204" ["opt_desc"]=> string(36) "

Mole fraction of solvent

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2240" ["question_id"]=> string(4) "2204" ["option_id"]=> string(4) "8741" } } } [28]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "177" ["ques_text"]=> string(96) "

The relative lowering of vapour pressure is equal to the ratio between the number of

" ["question_id"]=> string(4) "2220" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "8793" ["question_id"]=> string(4) "2220" ["opt_desc"]=> string(53) "

Solute molecules to the solvent molecules

" } [1]=> array(3) { ["option_id"]=> string(4) "8794" ["question_id"]=> string(4) "2220" ["opt_desc"]=> string(63) "

Solute molecules to the total molecules in Solution

" } [2]=> array(3) { ["option_id"]=> string(4) "8795" ["question_id"]=> string(4) "2220" ["opt_desc"]=> string(68) "

Solvent molecules to the total molecules in the solution

" } [3]=> array(3) { ["option_id"]=> string(4) "8796" ["question_id"]=> string(4) "2220" ["opt_desc"]=> string(71) "

Solvent molecules to the total number of ions of the solute

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2256" ["question_id"]=> string(4) "2220" ["option_id"]=> string(4) "8794" } } } [29]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "183" ["ques_text"]=> string(124) "

If 224 ml of a triatomic gas has a mass of 1 gm at 273 K and 1 atmospheric pressure then the mass of one atom is

" ["question_id"]=> string(4) "2262" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "8941" ["question_id"]=> string(4) "2262" ["opt_desc"]=> string(38) "

8.30 x 10-23 gm

" } [1]=> array(3) { ["option_id"]=> string(4) "8942" ["question_id"]=> string(4) "2262" ["opt_desc"]=> string(38) "

2.08 x 10-23 gm

" } [2]=> array(3) { ["option_id"]=> string(4) "8943" ["question_id"]=> string(4) "2262" ["opt_desc"]=> string(38) "

5.53 x 10-23 gm

" } [3]=> array(3) { ["option_id"]=> string(4) "8944" ["question_id"]=> string(4) "2262" ["opt_desc"]=> string(38) "

6.24 x 10-23 gm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2298" ["question_id"]=> string(4) "2262" ["option_id"]=> string(4) "8943" } } } [30]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "188" ["ques_text"]=> string(102) "

The number of molecules in 8.96 litre of a gas at 0.C and 1 atm. Pressure is approximately

" ["question_id"]=> string(4) "2327" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "9193" ["question_id"]=> string(4) "2327" ["opt_desc"]=> string(35) "

6.023 x 1023

" } [1]=> array(3) { ["option_id"]=> string(4) "9194" ["question_id"]=> string(4) "2327" ["opt_desc"]=> string(35) "

12.04 x 1023

" } [2]=> array(3) { ["option_id"]=> string(4) "9195" ["question_id"]=> string(4) "2327" ["opt_desc"]=> string(35) "

18.06 x 1023

" } [3]=> array(3) { ["option_id"]=> string(4) "9196" ["question_id"]=> string(4) "2327" ["opt_desc"]=> string(35) "

24.08 x 1022

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2363" ["question_id"]=> string(4) "2327" ["option_id"]=> string(4) "9196" } } } [31]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "189" ["ques_text"]=> string(255) "

When burnt in air, 14.0 g mixture of carbon and sulphur gives a mixture of CO2 and SO2 in the volume ratio of 2:1, volume being measured at the same conditions of temperature and pressure moles of carbon in the mixture is

" ["question_id"]=> string(4) "2336" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(4) "9229" ["question_id"]=> string(4) "2336" ["opt_desc"]=> string(16) "

0.75

" } [1]=> array(3) { ["option_id"]=> string(4) "9230" ["question_id"]=> string(4) "2336" ["opt_desc"]=> string(15) "

0.5

" } [2]=> array(3) { ["option_id"]=> string(4) "9231" ["question_id"]=> string(4) "2336" ["opt_desc"]=> string(16) "

0.40

" } [3]=> array(3) { ["option_id"]=> string(4) "9232" ["question_id"]=> string(4) "2336" ["opt_desc"]=> string(16) "

0.25

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "2372" ["question_id"]=> string(4) "2336" ["option_id"]=> string(4) "9230" } } } [32]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "224" ["ques_text"]=> string(287) "

One mole of Q2 gas having a volume equal to 22.4 litres at 0°C and 1 atmospheric pressure in compressed isothermally so that its volume reduces to 11.2 litres. The work done in this process is [MP PET 1993; BVP 2003]

" ["question_id"]=> string(4) "3086" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12229" ["question_id"]=> string(4) "3086" ["opt_desc"]=> string(29) "

1672.5 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12230" ["question_id"]=> string(4) "3086" ["opt_desc"]=> string(27) "

1728 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12231" ["question_id"]=> string(4) "3086" ["opt_desc"]=> string(35) "

– 1728 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12232" ["question_id"]=> string(4) "3086" ["opt_desc"]=> string(36) "

–1572.5 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3126" ["question_id"]=> string(4) "3086" ["option_id"]=> string(5) "12232" } } } [33]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "224" ["ques_text"]=> string(204) "

How much energy is absorbed by 10 kg molecule of an ideal gas if it expands from an initial pressure of 8 atm to 4 atm at a constant temperature of 27°C

" ["question_id"]=> string(4) "3087" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12233" ["question_id"]=> string(4) "3087" ["opt_desc"]=> string(36) "

1.728 x 107 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12234" ["question_id"]=> string(4) "3087" ["opt_desc"]=> string(36) "

17.28 x 107 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12235" ["question_id"]=> string(4) "3087" ["opt_desc"]=> string(102) "

1.728 x 109 J           

" } [3]=> array(3) { ["option_id"]=> string(5) "12236" ["question_id"]=> string(4) "3087" ["opt_desc"]=> string(36) "

17.28 x 109 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3127" ["question_id"]=> string(4) "3087" ["option_id"]=> string(5) "12233" } } } [34]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "224" ["ques_text"]=> string(184) "

During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio Cp/Cv for the gas is

" ["question_id"]=> string(4) "3088" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12237" ["question_id"]=> string(4) "3088" ["opt_desc"]=> string(15) "

3/2

" } [1]=> array(3) { ["option_id"]=> string(5) "12238" ["question_id"]=> string(4) "3088" ["opt_desc"]=> string(15) "

4/3

" } [2]=> array(3) { ["option_id"]=> string(5) "12239" ["question_id"]=> string(4) "3088" ["opt_desc"]=> string(13) "

2

" } [3]=> array(3) { ["option_id"]=> string(5) "12240" ["question_id"]=> string(4) "3088" ["opt_desc"]=> string(15) "

5/3

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3128" ["question_id"]=> string(4) "3088" ["option_id"]=> string(5) "12237" } } } [35]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "224" ["ques_text"]=> string(159) "

If γ = 2.5 and volume is equal to 1/8 times to the initial volume then pressure P ¢ is equal to (initial pressure = P)

" ["question_id"]=> string(4) "3089" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12241" ["question_id"]=> string(4) "3089" ["opt_desc"]=> string(22) "

P’=P

" } [1]=> array(3) { ["option_id"]=> string(5) "12242" ["question_id"]=> string(4) "3089" ["opt_desc"]=> string(23) "

P’=2P

" } [2]=> array(3) { ["option_id"]=> string(5) "12243" ["question_id"]=> string(4) "3089" ["opt_desc"]=> string(43) "

P’=P x (2)15/2

" } [3]=> array(3) { ["option_id"]=> string(5) "12244" ["question_id"]=> string(4) "3089" ["opt_desc"]=> string(23) "

P’=7P

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3129" ["question_id"]=> string(4) "3089" ["option_id"]=> string(5) "12243" } } } [36]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "224" ["ques_text"]=> string(617) "

A thermally insulated container is divided into two parts by a screen. In one part the pressure and temperature are P and T for an ideal gas filled. In the second part it is vacuum. If now a small hole is created in the screen, then the temperature of the gas will                                                  [RPET 1999]

" ["question_id"]=> string(4) "3090" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12245" ["question_id"]=> string(4) "3090" ["opt_desc"]=> string(20) "

Decrease

" } [1]=> array(3) { ["option_id"]=> string(5) "12246" ["question_id"]=> string(4) "3090" ["opt_desc"]=> string(20) "

Increase

" } [2]=> array(3) { ["option_id"]=> string(5) "12247" ["question_id"]=> string(4) "3090" ["opt_desc"]=> string(23) "

Remain same

" } [3]=> array(3) { ["option_id"]=> string(5) "12248" ["question_id"]=> string(4) "3090" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3130" ["question_id"]=> string(4) "3090" ["option_id"]=> string(5) "12247" } } } [37]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "224" ["ques_text"]=> string(379) "

Two samples A and B of a gas initially at the same pressure and temperature are compressed from volume V to V/2 (A isothermally and B adiabatically). The final pressure of A is        

[MP PET 1996, 99; MP PMT 1997, 99]

" ["question_id"]=> string(4) "3091" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12249" ["question_id"]=> string(4) "3091" ["opt_desc"]=> string(57) "

Greater than the final pressure of B

" } [1]=> array(3) { ["option_id"]=> string(5) "12250" ["question_id"]=> string(4) "3091" ["opt_desc"]=> string(53) "

Equal to the final pressure of B

" } [2]=> array(3) { ["option_id"]=> string(5) "12251" ["question_id"]=> string(4) "3091" ["opt_desc"]=> string(54) "

Less than the final pressure of B

" } [3]=> array(3) { ["option_id"]=> string(5) "12252" ["question_id"]=> string(4) "3091" ["opt_desc"]=> string(50) "

Twice the final pressure of B

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3131" ["question_id"]=> string(4) "3091" ["option_id"]=> string(5) "12251" } } } [38]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "224" ["ques_text"]=> string(183) "

A gas has pressure P and volume V. It is now compressed adiabatically to 1/32 times the original volume. If (32)1.4=128, the final pressure is

" ["question_id"]=> string(4) "3092" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12253" ["question_id"]=> string(4) "3092" ["opt_desc"]=> string(25) "

32 P

" } [1]=> array(3) { ["option_id"]=> string(5) "12254" ["question_id"]=> string(4) "3092" ["opt_desc"]=> string(26) "

128 P

" } [2]=> array(3) { ["option_id"]=> string(5) "12255" ["question_id"]=> string(4) "3092" ["opt_desc"]=> string(17) "

P/128

" } [3]=> array(3) { ["option_id"]=> string(5) "12256" ["question_id"]=> string(4) "3092" ["opt_desc"]=> string(16) "

P/32

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3132" ["question_id"]=> string(4) "3092" ["option_id"]=> string(5) "12254" } } } [39]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "224" ["ques_text"]=> string(295) "

Molar specific heat of oxygen at constant pressure Cp=7.2 cal/mol/oC and R = 8.3 J/mol/K. At constant volume, 5 mol of oxygen is heated from 10°C to 20°C, the quantity of heat required is approximately

" ["question_id"]=> string(4) "3094" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12261" ["question_id"]=> string(4) "3094" ["opt_desc"]=> string(27) "

25 cal

" } [1]=> array(3) { ["option_id"]=> string(5) "12262" ["question_id"]=> string(4) "3094" ["opt_desc"]=> string(27) "

50 cal

" } [2]=> array(3) { ["option_id"]=> string(5) "12263" ["question_id"]=> string(4) "3094" ["opt_desc"]=> string(28) "

250 cal

" } [3]=> array(3) { ["option_id"]=> string(5) "12264" ["question_id"]=> string(4) "3094" ["opt_desc"]=> string(28) "

500 cal

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3134" ["question_id"]=> string(4) "3094" ["option_id"]=> string(5) "12263" } } } [40]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "225" ["ques_text"]=> string(2898) "

In pressure-volume diagram given below, the isochoric, isothermal, and isobaric parts respectively, are

" ["question_id"]=> string(4) "3098" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12277" ["question_id"]=> string(4) "3098" ["opt_desc"]=> string(49) "

BA, AD, DC

" } [1]=> array(3) { ["option_id"]=> string(5) "12278" ["question_id"]=> string(4) "3098" ["opt_desc"]=> string(55) "

 DC, CB, BA

" } [2]=> array(3) { ["option_id"]=> string(5) "12279" ["question_id"]=> string(4) "3098" ["opt_desc"]=> string(49) "

AB, BC, CD

" } [3]=> array(3) { ["option_id"]=> string(5) "12280" ["question_id"]=> string(4) "3098" ["opt_desc"]=> string(49) "

CD, DA, AB

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3138" ["question_id"]=> string(4) "3098" ["option_id"]=> string(5) "12280" } } } [41]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "225" ["ques_text"]=> string(165) "

When an ideal gas (g = 5/3) is heated under constant pressure, then what percentage of given heat energy will be utilised in doing external work

" ["question_id"]=> string(4) "3099" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12281" ["question_id"]=> string(4) "3099" ["opt_desc"]=> string(15) "

40%

" } [1]=> array(3) { ["option_id"]=> string(5) "12282" ["question_id"]=> string(4) "3099" ["opt_desc"]=> string(15) "

30%

" } [2]=> array(3) { ["option_id"]=> string(5) "12283" ["question_id"]=> string(4) "3099" ["opt_desc"]=> string(15) "

60%

" } [3]=> array(3) { ["option_id"]=> string(5) "12284" ["question_id"]=> string(4) "3099" ["opt_desc"]=> string(15) "

20%

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3139" ["question_id"]=> string(4) "3099" ["option_id"]=> string(5) "12281" } } } [42]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "225" ["ques_text"]=> string(210) "

5 mole of hydrogen gas is heated from 30°C to 60°C at constant pressure. Heat given to the gas is (given R = 2 cal/mole degree)

" ["question_id"]=> string(4) "3100" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12285" ["question_id"]=> string(4) "3100" ["opt_desc"]=> string(32) "

750 calorie

" } [1]=> array(3) { ["option_id"]=> string(5) "12286" ["question_id"]=> string(4) "3100" ["opt_desc"]=> string(32) "

630 calorie

" } [2]=> array(3) { ["option_id"]=> string(5) "12287" ["question_id"]=> string(4) "3100" ["opt_desc"]=> string(33) "

1050 calorie

" } [3]=> array(3) { ["option_id"]=> string(5) "12288" ["question_id"]=> string(4) "3100" ["opt_desc"]=> string(33) "

1470 calorie

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3140" ["question_id"]=> string(4) "3100" ["option_id"]=> string(5) "12287" } } } [43]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "225" ["ques_text"]=> string(185) "

A gas expands 0.25m3 at constant pressure 103 N/m2, the work done is

[CPMT 1997; UPSEAT 1999; JIPMER 2001, 2002]

" ["question_id"]=> string(4) "3101" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12289" ["question_id"]=> string(4) "3101" ["opt_desc"]=> string(29) "

2.5 ergs

" } [1]=> array(3) { ["option_id"]=> string(5) "12290" ["question_id"]=> string(4) "3101" ["opt_desc"]=> string(26) "

250 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12291" ["question_id"]=> string(4) "3101" ["opt_desc"]=> string(26) "

250 W

" } [3]=> array(3) { ["option_id"]=> string(5) "12292" ["question_id"]=> string(4) "3101" ["opt_desc"]=> string(26) "

250 N

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3141" ["question_id"]=> string(4) "3101" ["option_id"]=> string(5) "12290" } } } [44]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "225" ["ques_text"]=> string(499) "

A gas is compressed at a constant pressure of 50N/m2  from a volume of 10 m3 to a volume of 4m3. Energy of 100 J is then added to the gas by heating. Its internal energy is                                              [MNR 1994]

" ["question_id"]=> string(4) "3106" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12309" ["question_id"]=> string(4) "3106" ["opt_desc"]=> string(39) "

Increased by 400 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12310" ["question_id"]=> string(4) "3106" ["opt_desc"]=> string(39) "

Increased by 200 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12311" ["question_id"]=> string(4) "3106" ["opt_desc"]=> string(39) "

Increased by 100 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12312" ["question_id"]=> string(4) "3106" ["opt_desc"]=> string(39) "

Decreased by 200 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3146" ["question_id"]=> string(4) "3106" ["option_id"]=> string(5) "12309" } } } [45]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "225" ["ques_text"]=> string(162) "

When an ideal diatomic gas is heated at constant pressure, the fraction of the heat energy supplied which increases the internal energy of the gas, is

" ["question_id"]=> string(4) "3108" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12317" ["question_id"]=> string(4) "3108" ["opt_desc"]=> string(15) "

2/5

" } [1]=> array(3) { ["option_id"]=> string(5) "12318" ["question_id"]=> string(4) "3108" ["opt_desc"]=> string(15) "

3/5

" } [2]=> array(3) { ["option_id"]=> string(5) "12319" ["question_id"]=> string(4) "3108" ["opt_desc"]=> string(15) "

3/7

" } [3]=> array(3) { ["option_id"]=> string(5) "12320" ["question_id"]=> string(4) "3108" ["opt_desc"]=> string(15) "

5/7

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3148" ["question_id"]=> string(4) "3108" ["option_id"]=> string(5) "12320" } } } [46]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "226" ["ques_text"]=> string(3143) "

 A thermodynamic process is shown in the figure. The pressures and volumes corresponding to some points in the figure are: PA=3 x 104Pa, PB=8 x104 Pa and VA= 2 x 10-3m3, VD=5 x 10-3m3

In process AB, 600 J of heat is added to the system and in process BC, 200 J of heat is added to the system. The change in internal energy of the system in process AC would be                             [CBSE PMT 1992]

" ["question_id"]=> string(4) "3112" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12333" ["question_id"]=> string(4) "3112" ["opt_desc"]=> string(26) "

560 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12334" ["question_id"]=> string(4) "3112" ["opt_desc"]=> string(26) "

800 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12335" ["question_id"]=> string(4) "3112" ["opt_desc"]=> string(26) "

600 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12336" ["question_id"]=> string(4) "3112" ["opt_desc"]=> string(26) "

640 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3152" ["question_id"]=> string(4) "3112" ["option_id"]=> string(5) "12333" } } } [47]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "226" ["ques_text"]=> string(3212) "

Carnot cycle (reversible) of a gas represented by a Pressure-Volume curve is shown in the diagram

Consider the following statements

I.          Area ABCD = Work done on the gas

II.        Area ABCD = Net heat absorbed

III.       Change in the internal energy in cycle = 0

Which of these are correct

" ["question_id"]=> string(4) "3122" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12373" ["question_id"]=> string(4) "3122" ["opt_desc"]=> string(18) "

I only

" } [1]=> array(3) { ["option_id"]=> string(5) "12374" ["question_id"]=> string(4) "3122" ["opt_desc"]=> string(19) "

II only

" } [2]=> array(3) { ["option_id"]=> string(5) "12375" ["question_id"]=> string(4) "3122" ["opt_desc"]=> string(22) "

II and III

" } [3]=> array(3) { ["option_id"]=> string(5) "12376" ["question_id"]=> string(4) "3122" ["opt_desc"]=> string(25) "

I, II and III

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3162" ["question_id"]=> string(4) "3122" ["option_id"]=> string(5) "12375" } } } [48]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "226" ["ques_text"]=> string(163) "

An ideal gas expands in such a manner that its pressure and volume can be related by equation PV2= constant. During this process, the gas is

" ["question_id"]=> string(4) "3123" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12377" ["question_id"]=> string(4) "3123" ["opt_desc"]=> string(18) "

Heated

" } [1]=> array(3) { ["option_id"]=> string(5) "12378" ["question_id"]=> string(4) "3123" ["opt_desc"]=> string(18) "

Cooled

" } [2]=> array(3) { ["option_id"]=> string(5) "12379" ["question_id"]=> string(4) "3123" ["opt_desc"]=> string(37) "

Neither heated nor cooled

" } [3]=> array(3) { ["option_id"]=> string(5) "12380" ["question_id"]=> string(4) "3123" ["opt_desc"]=> string(40) "

First heated and then cooled

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3163" ["question_id"]=> string(4) "3123" ["option_id"]=> string(5) "12378" } } } [49]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "226" ["ques_text"]=> string(435) "

At 100°C the volume of 1kg of water is 10-3m3 and volume of 1 kg of steam at normal pressure is 1.67 m3. The latent heat of steam is 2.3 x 106 J/kg and the normal pressure is 105 N/m2. If 5 kg of water at 100°C is converted into steam, the increase in the internal energy of water in this process will be

" ["question_id"]=> string(4) "3126" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12389" ["question_id"]=> string(4) "3126" ["opt_desc"]=> string(35) "

8.35 x 105 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12390" ["question_id"]=> string(4) "3126" ["opt_desc"]=> string(36) "

10.66 x 106 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12391" ["question_id"]=> string(4) "3126" ["opt_desc"]=> string(35) "

11.5 x 106 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12392" ["question_id"]=> string(4) "3126" ["opt_desc"]=> string(16) "

Zero

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3166" ["question_id"]=> string(4) "3126" ["option_id"]=> string(5) "12390" } } } [50]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "226" ["ques_text"]=> string(496) "

1cm3 of water at its boiling point absorbs 540 calories of heat to become steam with a volume of 1671cm2. If the atmospheric pressure is 1.013 x 105 N/m2 and the mechanical equivalent of heat = 4.19 J/calorie, the energy spent in this process in overcoming intermolecular forces is             

[MP PET 1999, 2001; Orissa JEE 2002

" ["question_id"]=> string(4) "3127" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12393" ["question_id"]=> string(4) "3127" ["opt_desc"]=> string(32) "

540 calorie

" } [1]=> array(3) { ["option_id"]=> string(5) "12394" ["question_id"]=> string(4) "3127" ["opt_desc"]=> string(31) "

40 calorie

" } [2]=> array(3) { ["option_id"]=> string(5) "12395" ["question_id"]=> string(4) "3127" ["opt_desc"]=> string(32) "

500 calorie

" } [3]=> array(3) { ["option_id"]=> string(5) "12396" ["question_id"]=> string(4) "3127" ["opt_desc"]=> string(16) "

Zero

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3167" ["question_id"]=> string(4) "3127" ["option_id"]=> string(5) "12395" } } } [51]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "228" ["ques_text"]=> string(437) "

Consider the following statements

Assertion (A): The internal energy of an ideal gas does not change during an isothermal process

Reason (R) : The decrease in volume of a gas is compensated by a corresponding increase in pressure when its temperature is held constant.

Of these statements

 

" ["question_id"]=> string(4) "3137" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12433" ["question_id"]=> string(4) "3137" ["opt_desc"]=> string(105) "

Both A and R are true and R is a correct explanation of A

" } [1]=> array(3) { ["option_id"]=> string(5) "12434" ["question_id"]=> string(4) "3137" ["opt_desc"]=> string(109) "

Both A and R are true but R is not a correct explanation of A

" } [2]=> array(3) { ["option_id"]=> string(5) "12435" ["question_id"]=> string(4) "3137" ["opt_desc"]=> string(54) "

A is true but R is false

" } [3]=> array(3) { ["option_id"]=> string(5) "12436" ["question_id"]=> string(4) "3137" ["opt_desc"]=> string(52) "

Both A and R are false

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3177" ["question_id"]=> string(4) "3137" ["option_id"]=> string(5) "12434" } } } [52]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "229" ["ques_text"]=> string(2594) "

In pressure-volume diagram given below, the isochoric, isothermal, and isobaric parts respectively, are

" ["question_id"]=> string(4) "3141" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12449" ["question_id"]=> string(4) "3141" ["opt_desc"]=> string(49) "

BA, AD, DC

" } [1]=> array(3) { ["option_id"]=> string(5) "12450" ["question_id"]=> string(4) "3141" ["opt_desc"]=> string(49) "

DC, CB, BA

" } [2]=> array(3) { ["option_id"]=> string(5) "12451" ["question_id"]=> string(4) "3141" ["opt_desc"]=> string(49) "

AB, BC, CD

" } [3]=> array(3) { ["option_id"]=> string(5) "12452" ["question_id"]=> string(4) "3141" ["opt_desc"]=> string(49) "

CD, DA, AB

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3181" ["question_id"]=> string(4) "3141" ["option_id"]=> string(5) "12452" } } } [53]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "229" ["ques_text"]=> string(165) "

When an ideal gas (g = 5/3) is heated under constant pressure, then what percentage of given heat energy will be utilised in doing external work

" ["question_id"]=> string(4) "3142" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12453" ["question_id"]=> string(4) "3142" ["opt_desc"]=> string(15) "

40%

" } [1]=> array(3) { ["option_id"]=> string(5) "12454" ["question_id"]=> string(4) "3142" ["opt_desc"]=> string(15) "

30%

" } [2]=> array(3) { ["option_id"]=> string(5) "12455" ["question_id"]=> string(4) "3142" ["opt_desc"]=> string(15) "

60%

" } [3]=> array(3) { ["option_id"]=> string(5) "12456" ["question_id"]=> string(4) "3142" ["opt_desc"]=> string(15) "

20%

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3182" ["question_id"]=> string(4) "3142" ["option_id"]=> string(5) "12453" } } } [54]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "229" ["ques_text"]=> string(210) "

5 mole of hydrogen gas is heated from 30°C to 60°C at constant pressure. Heat given to the gas is (given R = 2 cal/mole degree)

" ["question_id"]=> string(4) "3143" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12457" ["question_id"]=> string(4) "3143" ["opt_desc"]=> string(32) "

750 calorie

" } [1]=> array(3) { ["option_id"]=> string(5) "12458" ["question_id"]=> string(4) "3143" ["opt_desc"]=> string(32) "

630 calorie

" } [2]=> array(3) { ["option_id"]=> string(5) "12459" ["question_id"]=> string(4) "3143" ["opt_desc"]=> string(33) "

1050 calorie

" } [3]=> array(3) { ["option_id"]=> string(5) "12460" ["question_id"]=> string(4) "3143" ["opt_desc"]=> string(33) "

1470 calorie

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3183" ["question_id"]=> string(4) "3143" ["option_id"]=> string(5) "12459" } } } [55]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "229" ["ques_text"]=> string(159) "

If γ = 2.5 and volume is equal to 1/8 times to the initial volume then pressure P ¢ is equal to (initial pressure = P)

" ["question_id"]=> string(4) "3144" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12461" ["question_id"]=> string(4) "3144" ["opt_desc"]=> string(22) "

P’=P

" } [1]=> array(3) { ["option_id"]=> string(5) "12462" ["question_id"]=> string(4) "3144" ["opt_desc"]=> string(23) "

P’=2P

" } [2]=> array(3) { ["option_id"]=> string(5) "12463" ["question_id"]=> string(4) "3144" ["opt_desc"]=> string(43) "

P’=P x (2)15/2

" } [3]=> array(3) { ["option_id"]=> string(5) "12464" ["question_id"]=> string(4) "3144" ["opt_desc"]=> string(23) "

P’=7P

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3184" ["question_id"]=> string(4) "3144" ["option_id"]=> string(5) "12463" } } } [56]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "229" ["ques_text"]=> string(231) "

A gas is compressed at a constant pressure of 50N/m2  from a volume of 10 m3 to a volume of 4m3. Energy of 100 J is then added to the gas by heating. Its internal energy is

" ["question_id"]=> string(4) "3147" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12473" ["question_id"]=> string(4) "3147" ["opt_desc"]=> string(39) "

Increased by 400 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12474" ["question_id"]=> string(4) "3147" ["opt_desc"]=> string(39) "

Increased by 200 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12475" ["question_id"]=> string(4) "3147" ["opt_desc"]=> string(39) "

Increased by 100 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12476" ["question_id"]=> string(4) "3147" ["opt_desc"]=> string(39) "

Decreased by 200 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3187" ["question_id"]=> string(4) "3147" ["option_id"]=> string(5) "12473" } } } [57]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "230" ["ques_text"]=> string(183) "

A gas has pressure P and volume V. It is now compressed adiabatically to 1/32 times the original volume. If (32)1.4=128, the final pressure is

" ["question_id"]=> string(4) "3159" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12521" ["question_id"]=> string(4) "3159" ["opt_desc"]=> string(25) "

32 P

" } [1]=> array(3) { ["option_id"]=> string(5) "12522" ["question_id"]=> string(4) "3159" ["opt_desc"]=> string(26) "

128 P

" } [2]=> array(3) { ["option_id"]=> string(5) "12523" ["question_id"]=> string(4) "3159" ["opt_desc"]=> string(17) "

P/128

" } [3]=> array(3) { ["option_id"]=> string(5) "12524" ["question_id"]=> string(4) "3159" ["opt_desc"]=> string(16) "

P/32

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3199" ["question_id"]=> string(4) "3159" ["option_id"]=> string(5) "12522" } } } [58]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "230" ["ques_text"]=> string(295) "

Molar specific heat of oxygen at constant pressure Cp=7.2 cal/mol/oC and R = 8.3 J/mol/K. At constant volume, 5 mol of oxygen is heated from 10°C to 20°C, the quantity of heat required is approximately

" ["question_id"]=> string(4) "3161" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12529" ["question_id"]=> string(4) "3161" ["opt_desc"]=> string(27) "

25 cal

" } [1]=> array(3) { ["option_id"]=> string(5) "12530" ["question_id"]=> string(4) "3161" ["opt_desc"]=> string(27) "

50 cal

" } [2]=> array(3) { ["option_id"]=> string(5) "12531" ["question_id"]=> string(4) "3161" ["opt_desc"]=> string(28) "

250 cal

" } [3]=> array(3) { ["option_id"]=> string(5) "12532" ["question_id"]=> string(4) "3161" ["opt_desc"]=> string(28) "

500 cal

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3201" ["question_id"]=> string(4) "3161" ["option_id"]=> string(5) "12531" } } } [59]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "230" ["ques_text"]=> string(441) "

 At 100°C the volume of 1kg of water is 10-3m3 and volume of 1 kg of steam at normal pressure is 1.67 m3. The latent heat of steam is 2.3 x 106 J/kg and the normal pressure is 105 N/m2. If 5 kg of water at 100°C is converted into steam, the increase in the internal energy of water in this process will be

" ["question_id"]=> string(4) "3167" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12553" ["question_id"]=> string(4) "3167" ["opt_desc"]=> string(35) "

8.35 x 105 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12554" ["question_id"]=> string(4) "3167" ["opt_desc"]=> string(36) "

10.66 x 106 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12555" ["question_id"]=> string(4) "3167" ["opt_desc"]=> string(35) "

11.5 x 106 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12556" ["question_id"]=> string(4) "3167" ["opt_desc"]=> string(16) "

Zero

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3207" ["question_id"]=> string(4) "3167" ["option_id"]=> string(5) "12554" } } } [60]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "230" ["ques_text"]=> string(364) "

1cm3 of water at its boiling point absorbs 540 calories of heat to become steam with a volume of 1671cm2. If the atmospheric pressure is 1.013 x 105 N/m2 and the mechanical equivalent of heat = 4.19 J/calorie, the energy spent in this process in overcoming intermolecular forces is

" ["question_id"]=> string(4) "3168" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12557" ["question_id"]=> string(4) "3168" ["opt_desc"]=> string(32) "

540 calorie

" } [1]=> array(3) { ["option_id"]=> string(5) "12558" ["question_id"]=> string(4) "3168" ["opt_desc"]=> string(31) "

40 calorie

" } [2]=> array(3) { ["option_id"]=> string(5) "12559" ["question_id"]=> string(4) "3168" ["opt_desc"]=> string(32) "

500 calorie

" } [3]=> array(3) { ["option_id"]=> string(5) "12560" ["question_id"]=> string(4) "3168" ["opt_desc"]=> string(16) "

Zero

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3208" ["question_id"]=> string(4) "3168" ["option_id"]=> string(5) "12559" } } } [61]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "231" ["ques_text"]=> string(113) "

A gas expands 0.25m3 at constant pressure 103 N/m2, the work done is

" ["question_id"]=> string(4) "3170" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12565" ["question_id"]=> string(4) "3170" ["opt_desc"]=> string(29) "

2.5 ergs

" } [1]=> array(3) { ["option_id"]=> string(5) "12566" ["question_id"]=> string(4) "3170" ["opt_desc"]=> string(26) "

250 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12567" ["question_id"]=> string(4) "3170" ["opt_desc"]=> string(26) "

250 W

" } [3]=> array(3) { ["option_id"]=> string(5) "12568" ["question_id"]=> string(4) "3170" ["opt_desc"]=> string(26) "

250 N

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3210" ["question_id"]=> string(4) "3170" ["option_id"]=> string(5) "12566" } } } [62]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "231" ["ques_text"]=> string(184) "

During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio Cp/Cv for the gas is

" ["question_id"]=> string(4) "3171" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12569" ["question_id"]=> string(4) "3171" ["opt_desc"]=> string(15) "

3/2

" } [1]=> array(3) { ["option_id"]=> string(5) "12570" ["question_id"]=> string(4) "3171" ["opt_desc"]=> string(15) "

4/3

" } [2]=> array(3) { ["option_id"]=> string(5) "12571" ["question_id"]=> string(4) "3171" ["opt_desc"]=> string(13) "

2

" } [3]=> array(3) { ["option_id"]=> string(5) "12572" ["question_id"]=> string(4) "3171" ["opt_desc"]=> string(15) "

5/3

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3211" ["question_id"]=> string(4) "3171" ["option_id"]=> string(5) "12569" } } } [63]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "231" ["ques_text"]=> string(437) "

Consider the following statements

Assertion (A): The internal energy of an ideal gas does not change during an isothermal process

Reason (R) : The decrease in volume of a gas is compensated by a corresponding increase in pressure when its temperature is held constant.

Of these statements

 

" ["question_id"]=> string(4) "3172" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12573" ["question_id"]=> string(4) "3172" ["opt_desc"]=> string(105) "

Both A and R are true and R is a correct explanation of A

" } [1]=> array(3) { ["option_id"]=> string(5) "12574" ["question_id"]=> string(4) "3172" ["opt_desc"]=> string(109) "

Both A and R are true but R is not a correct explanation of A

" } [2]=> array(3) { ["option_id"]=> string(5) "12575" ["question_id"]=> string(4) "3172" ["opt_desc"]=> string(54) "

A is true but R is false

" } [3]=> array(3) { ["option_id"]=> string(5) "12576" ["question_id"]=> string(4) "3172" ["opt_desc"]=> string(52) "

Both A and R are false

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3212" ["question_id"]=> string(4) "3172" ["option_id"]=> string(5) "12574" } } } [64]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "231" ["ques_text"]=> string(3029) "

A thermodynamic process is shown in the figure. The pressures and volumes corresponding to some points in the figure are: PA=3 x 104Pa, PB=8 x104 Pa and VA= 2 x 10-3m3, VD=5 x 10-3m3

In process AB, 600 J of heat is added to the system and in process BC, 200 J of heat is added to the system. The change in internal energy of the system in process AC would be

" ["question_id"]=> string(4) "3173" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12577" ["question_id"]=> string(4) "3173" ["opt_desc"]=> string(26) "

560 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12578" ["question_id"]=> string(4) "3173" ["opt_desc"]=> string(26) "

800 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12579" ["question_id"]=> string(4) "3173" ["opt_desc"]=> string(26) "

600 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12580" ["question_id"]=> string(4) "3173" ["opt_desc"]=> string(26) "

640 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3213" ["question_id"]=> string(4) "3173" ["option_id"]=> string(5) "12577" } } } [65]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "231" ["ques_text"]=> string(251) "

Two samples A and B of a gas initially at the same pressure and temperature are compressed from volume V to V/2 (A isothermally and B adiabatically). The final pressure of A is

" ["question_id"]=> string(4) "3180" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12605" ["question_id"]=> string(4) "3180" ["opt_desc"]=> string(57) "

Greater than the final pressure of B

" } [1]=> array(3) { ["option_id"]=> string(5) "12606" ["question_id"]=> string(4) "3180" ["opt_desc"]=> string(53) "

Equal to the final pressure of B

" } [2]=> array(3) { ["option_id"]=> string(5) "12607" ["question_id"]=> string(4) "3180" ["opt_desc"]=> string(54) "

Less than the final pressure of B

" } [3]=> array(3) { ["option_id"]=> string(5) "12608" ["question_id"]=> string(4) "3180" ["opt_desc"]=> string(50) "

Twice the final pressure of B

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3220" ["question_id"]=> string(4) "3180" ["option_id"]=> string(5) "12607" } } } [66]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "231" ["ques_text"]=> string(163) "

An ideal gas expands in such a manner that its pressure and volume can be related by equation PV2= constant. During this process, the gas is

" ["question_id"]=> string(4) "3181" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12609" ["question_id"]=> string(4) "3181" ["opt_desc"]=> string(18) "

Heated

" } [1]=> array(3) { ["option_id"]=> string(5) "12610" ["question_id"]=> string(4) "3181" ["opt_desc"]=> string(18) "

Cooled

" } [2]=> array(3) { ["option_id"]=> string(5) "12611" ["question_id"]=> string(4) "3181" ["opt_desc"]=> string(37) "

Neither heated nor cooled

" } [3]=> array(3) { ["option_id"]=> string(5) "12612" ["question_id"]=> string(4) "3181" ["opt_desc"]=> string(40) "

First heated and then cooled

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3221" ["question_id"]=> string(4) "3181" ["option_id"]=> string(5) "12610" } } } [67]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "232" ["ques_text"]=> string(204) "

How much energy is absorbed by 10 kg molecule of an ideal gas if it expands from an initial pressure of 8 atm to 4 atm at a constant temperature of 27°C

" ["question_id"]=> string(4) "3185" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12625" ["question_id"]=> string(4) "3185" ["opt_desc"]=> string(36) "

1.728 x 107 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12626" ["question_id"]=> string(4) "3185" ["opt_desc"]=> string(36) "

17.28 x 107 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12627" ["question_id"]=> string(4) "3185" ["opt_desc"]=> string(36) "

1.728 x 109 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12628" ["question_id"]=> string(4) "3185" ["opt_desc"]=> string(36) "

17.28 x 109 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3225" ["question_id"]=> string(4) "3185" ["option_id"]=> string(5) "12625" } } } [68]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "232" ["ques_text"]=> string(3194) "

Carnot cycle (reversible) of a gas represented by a Pressure-Volume curve is shown in the diagram

Consider the following statements

I.          Area ABCD = Work done on the gas

II.        Area ABCD = Net heat absorbed

III.       Change in the internal energy in cycle = 0

Which of these are correct

 

" ["question_id"]=> string(4) "3187" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12633" ["question_id"]=> string(4) "3187" ["opt_desc"]=> string(18) "

I only

" } [1]=> array(3) { ["option_id"]=> string(5) "12634" ["question_id"]=> string(4) "3187" ["opt_desc"]=> string(19) "

II only

" } [2]=> array(3) { ["option_id"]=> string(5) "12635" ["question_id"]=> string(4) "3187" ["opt_desc"]=> string(22) "

II and III

" } [3]=> array(3) { ["option_id"]=> string(5) "12636" ["question_id"]=> string(4) "3187" ["opt_desc"]=> string(25) "

I, II and III

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3227" ["question_id"]=> string(4) "3187" ["option_id"]=> string(5) "12635" } } } [69]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "232" ["ques_text"]=> string(294) "

A thermally insulated container is divided into two parts by a screen. In one part the pressure and temperature are P and T for an ideal gas filled. In the second part it is vacuum. If now a small hole is created in the screen, then the temperature of the gas will

" ["question_id"]=> string(4) "3188" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12637" ["question_id"]=> string(4) "3188" ["opt_desc"]=> string(20) "

Decrease

" } [1]=> array(3) { ["option_id"]=> string(5) "12638" ["question_id"]=> string(4) "3188" ["opt_desc"]=> string(20) "

Increase

" } [2]=> array(3) { ["option_id"]=> string(5) "12639" ["question_id"]=> string(4) "3188" ["opt_desc"]=> string(23) "

Remain same

" } [3]=> array(3) { ["option_id"]=> string(5) "12640" ["question_id"]=> string(4) "3188" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3228" ["question_id"]=> string(4) "3188" ["option_id"]=> string(5) "12639" } } } [70]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "232" ["ques_text"]=> string(246) "

One mole of Q2 gas having a volume equal to 22.4 litres at 0°C and 1 atmospheric pressure in compressed isothermally so that its volume reduces to 11.2 litres. The work done in this process is

" ["question_id"]=> string(4) "3189" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12641" ["question_id"]=> string(4) "3189" ["opt_desc"]=> string(29) "

1672.5 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12642" ["question_id"]=> string(4) "3189" ["opt_desc"]=> string(27) "

1728 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12643" ["question_id"]=> string(4) "3189" ["opt_desc"]=> string(35) "

– 1728 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12644" ["question_id"]=> string(4) "3189" ["opt_desc"]=> string(42) "

 –1572.5 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3229" ["question_id"]=> string(4) "3189" ["option_id"]=> string(5) "12644" } } } [71]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "232" ["ques_text"]=> string(162) "

When an ideal diatomic gas is heated at constant pressure, the fraction of the heat energy supplied which increases the internal energy of the gas, is

" ["question_id"]=> string(4) "3190" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12645" ["question_id"]=> string(4) "3190" ["opt_desc"]=> string(15) "

2/5

" } [1]=> array(3) { ["option_id"]=> string(5) "12646" ["question_id"]=> string(4) "3190" ["opt_desc"]=> string(15) "

3/5

" } [2]=> array(3) { ["option_id"]=> string(5) "12647" ["question_id"]=> string(4) "3190" ["opt_desc"]=> string(15) "

3/7

" } [3]=> array(3) { ["option_id"]=> string(5) "12648" ["question_id"]=> string(4) "3190" ["opt_desc"]=> string(15) "

5/7

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3230" ["question_id"]=> string(4) "3190" ["option_id"]=> string(5) "12648" } } } [72]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "236" ["ques_text"]=> string(199) "

A gas at 27°C has a volume V and pressure P. On heating its pressure is doubled and volume becomes three times. The resulting temperature of the gas will be

" ["question_id"]=> string(4) "3251" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12889" ["question_id"]=> string(4) "3251" ["opt_desc"]=> string(31) "

1800°C

" } [1]=> array(3) { ["option_id"]=> string(5) "12890" ["question_id"]=> string(4) "3251" ["opt_desc"]=> string(30) "

162°C

" } [2]=> array(3) { ["option_id"]=> string(5) "12891" ["question_id"]=> string(4) "3251" ["opt_desc"]=> string(31) "

1527°C

" } [3]=> array(3) { ["option_id"]=> string(5) "12892" ["question_id"]=> string(4) "3251" ["opt_desc"]=> string(30) "

600°C

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3291" ["question_id"]=> string(4) "3251" ["option_id"]=> string(5) "12891" } } } [73]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "236" ["ques_text"]=> string(141) "

The kinetic energy of one gram mole of a gas at normal temperature and pressure is (R = 8.31 J/mole-K)

" ["question_id"]=> string(4) "3260" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12925" ["question_id"]=> string(4) "3260" ["opt_desc"]=> string(35) "

0.56 x 104 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12926" ["question_id"]=> string(4) "3260" ["opt_desc"]=> string(34) "

1.3 x 102 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12927" ["question_id"]=> string(4) "3260" ["opt_desc"]=> string(34) "

2.7 x 102 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12928" ["question_id"]=> string(4) "3260" ["opt_desc"]=> string(34) "

3.4 x 103 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3300" ["question_id"]=> string(4) "3260" ["option_id"]=> string(5) "12928" } } } [74]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "236" ["ques_text"]=> string(176) "

The average degrees of freedom per molecule for a gas is 6. The gas performs 25 J of work when it expands at constant pressure. The heat absorbed by gas is

" ["question_id"]=> string(4) "3262" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12933" ["question_id"]=> string(4) "3262" ["opt_desc"]=> string(25) "

75 J

" } [1]=> array(3) { ["option_id"]=> string(5) "12934" ["question_id"]=> string(4) "3262" ["opt_desc"]=> string(26) "

100 J

" } [2]=> array(3) { ["option_id"]=> string(5) "12935" ["question_id"]=> string(4) "3262" ["opt_desc"]=> string(26) "

150 J

" } [3]=> array(3) { ["option_id"]=> string(5) "12936" ["question_id"]=> string(4) "3262" ["opt_desc"]=> string(26) "

125 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3302" ["question_id"]=> string(4) "3262" ["option_id"]=> string(5) "12934" } } } [75]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "236" ["ques_text"]=> string(106) "

A gas, is heated at constant pressure. The fraction of heat supplied used for external work is

" ["question_id"]=> string(4) "3263" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12937" ["question_id"]=> string(4) "3263" ["opt_desc"]=> string(22) "

1/ γ

" } [1]=> array(3) { ["option_id"]=> string(5) "12938" ["question_id"]=> string(4) "3263" ["opt_desc"]=> string(25) "

(1-1/γ)

" } [2]=> array(3) { ["option_id"]=> string(5) "12939" ["question_id"]=> string(4) "3263" ["opt_desc"]=> string(21) "

γ-1

" } [3]=> array(3) { ["option_id"]=> string(5) "12940" ["question_id"]=> string(4) "3263" ["opt_desc"]=> string(37) "

(1-1/γ2)

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3303" ["question_id"]=> string(4) "3263" ["option_id"]=> string(5) "12938" } } } [76]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "237" ["ques_text"]=> string(90) "

If the mean free path of atoms is doubled then the pressure of gas will become

" ["question_id"]=> string(4) "3267" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12953" ["question_id"]=> string(4) "3267" ["opt_desc"]=> string(15) "

P/4

" } [1]=> array(3) { ["option_id"]=> string(5) "12954" ["question_id"]=> string(4) "3267" ["opt_desc"]=> string(15) "

P/2

" } [2]=> array(3) { ["option_id"]=> string(5) "12955" ["question_id"]=> string(4) "3267" ["opt_desc"]=> string(15) "

P/8

" } [3]=> array(3) { ["option_id"]=> string(5) "12956" ["question_id"]=> string(4) "3267" ["opt_desc"]=> string(22) "

P

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3307" ["question_id"]=> string(4) "3267" ["option_id"]=> string(5) "12954" } } } [77]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "237" ["ques_text"]=> string(303) "

The temperature, pressure and volume of two gases X and Y are T, P and V respectively. When the gases are mixed then the volume and temperature of mixture become V and T respectively. The pressure and mass of the mixture will be

" ["question_id"]=> string(4) "3269" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12961" ["question_id"]=> string(4) "3269" ["opt_desc"]=> string(39) "

2P and 2M

" } [1]=> array(3) { ["option_id"]=> string(5) "12962" ["question_id"]=> string(4) "3269" ["opt_desc"]=> string(37) "

P and M

" } [2]=> array(3) { ["option_id"]=> string(5) "12963" ["question_id"]=> string(4) "3269" ["opt_desc"]=> string(38) "

P and 2M

" } [3]=> array(3) { ["option_id"]=> string(5) "12964" ["question_id"]=> string(4) "3269" ["opt_desc"]=> string(38) "

2P and M

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3309" ["question_id"]=> string(4) "3269" ["option_id"]=> string(5) "12961" } } } [78]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "237" ["ques_text"]=> string(456) "

Two gases occupy two containers A and B the gas in A, of volume 0.10 m3, exerts a pressure of 1.40 MPa and that in B of volume 0.15 m3 exerts a pressure 0.7 MPa. The two containers are united by a tube of negligible volume and the gases are allowed to intermingle. Then it the temperature remains constant, the final pressure in the container will be (in MPa)

" ["question_id"]=> string(4) "3270" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12965" ["question_id"]=> string(4) "3270" ["opt_desc"]=> string(16) "

0.70

" } [1]=> array(3) { ["option_id"]=> string(5) "12966" ["question_id"]=> string(4) "3270" ["opt_desc"]=> string(16) "

0.98

" } [2]=> array(3) { ["option_id"]=> string(5) "12967" ["question_id"]=> string(4) "3270" ["opt_desc"]=> string(16) "

1.40

" } [3]=> array(3) { ["option_id"]=> string(5) "12968" ["question_id"]=> string(4) "3270" ["opt_desc"]=> string(16) "

2.10

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3310" ["question_id"]=> string(4) "3270" ["option_id"]=> string(5) "12966" } } } [79]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "237" ["ques_text"]=> string(338) "

On 0°C pressure measured by barometer is 760 mm. What will be pressure on 100°C                                                 [AFMC 2002]

" ["question_id"]=> string(4) "3272" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12973" ["question_id"]=> string(4) "3272" ["opt_desc"]=> string(27) "

760 mm

" } [1]=> array(3) { ["option_id"]=> string(5) "12974" ["question_id"]=> string(4) "3272" ["opt_desc"]=> string(27) "

730 mm

" } [2]=> array(3) { ["option_id"]=> string(5) "12975" ["question_id"]=> string(4) "3272" ["opt_desc"]=> string(27) "

780 mm

" } [3]=> array(3) { ["option_id"]=> string(5) "12976" ["question_id"]=> string(4) "3272" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3312" ["question_id"]=> string(4) "3272" ["option_id"]=> string(5) "12976" } } } [80]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "237" ["ques_text"]=> string(176) "

Hydrogen gas is filled in a balloon at 20°C. If temperature is made 40°C, pressure remaining same, what fraction of hydrogen will come out

" ["question_id"]=> string(4) "3273" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12977" ["question_id"]=> string(4) "3273" ["opt_desc"]=> string(16) "

0.07

" } [1]=> array(3) { ["option_id"]=> string(5) "12978" ["question_id"]=> string(4) "3273" ["opt_desc"]=> string(16) "

0.25

" } [2]=> array(3) { ["option_id"]=> string(5) "12979" ["question_id"]=> string(4) "3273" ["opt_desc"]=> string(15) "

0.5

" } [3]=> array(3) { ["option_id"]=> string(5) "12980" ["question_id"]=> string(4) "3273" ["opt_desc"]=> string(16) "

0.75

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3313" ["question_id"]=> string(4) "3273" ["option_id"]=> string(5) "12977" } } } [81]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "237" ["ques_text"]=> string(237) "

If a given mass of gas occupies a volume of 10 cc at 1 atmospheric pressure and temperature of 100°C (373.15 K). What will be its volume at 4 atmospheric pressure; the temperature being the same

" ["question_id"]=> string(4) "3274" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12981" ["question_id"]=> string(4) "3274" ["opt_desc"]=> string(27) "

100 cc

" } [1]=> array(3) { ["option_id"]=> string(5) "12982" ["question_id"]=> string(4) "3274" ["opt_desc"]=> string(27) "

400 cc

" } [2]=> array(3) { ["option_id"]=> string(5) "12983" ["question_id"]=> string(4) "3274" ["opt_desc"]=> string(27) "

2.5 cc

" } [3]=> array(3) { ["option_id"]=> string(5) "12984" ["question_id"]=> string(4) "3274" ["opt_desc"]=> string(27) "

104 cc

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3314" ["question_id"]=> string(4) "3274" ["option_id"]=> string(5) "12983" } } } [82]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "237" ["ques_text"]=> string(340) "

The molecules of a given mass of a gas have a rms velocity of 200 m/sec at 27°C and 1.0 x 105 N/m2 pressure. When the temperature is 127°C and pressure is 0.5 x 105 N/m2, the rms velocity in m/sec will be

" ["question_id"]=> string(4) "3275" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "12985" ["question_id"]=> string(4) "3275" ["opt_desc"]=> string(125) "

1002/3

" } [1]=> array(3) { ["option_id"]=> string(5) "12986" ["question_id"]=> string(4) "3275" ["opt_desc"]=> string(105) "

1002

" } [2]=> array(3) { ["option_id"]=> string(5) "12987" ["question_id"]=> string(4) "3275" ["opt_desc"]=> string(115) "

400/2

" } [3]=> array(3) { ["option_id"]=> string(5) "12988" ["question_id"]=> string(4) "3275" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3315" ["question_id"]=> string(4) "3275" ["option_id"]=> string(5) "12987" } } } [83]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "237" ["ques_text"]=> string(373) "

The pressure P, volume V and temperature T of a gas in the jar A and the other gas in the jar B at pressure 2P, volume V/4 and temperature 2T, then the ratio of the number of molecules in the jar A and B will be      [AIIMS 1982]

" ["question_id"]=> string(4) "3279" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13001" ["question_id"]=> string(4) "3279" ["opt_desc"]=> string(17) "

1 : 1

" } [1]=> array(3) { ["option_id"]=> string(5) "13002" ["question_id"]=> string(4) "3279" ["opt_desc"]=> string(17) "

1 : 2

" } [2]=> array(3) { ["option_id"]=> string(5) "13003" ["question_id"]=> string(4) "3279" ["opt_desc"]=> string(17) "

2 : 1

" } [3]=> array(3) { ["option_id"]=> string(5) "13004" ["question_id"]=> string(4) "3279" ["opt_desc"]=> string(17) "

4 : 1

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3319" ["question_id"]=> string(4) "3279" ["option_id"]=> string(5) "13004" } } } [84]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "238" ["ques_text"]=> string(207) "

A balloon contains 500 m3 of helium at 27°C and 1 atmosphere pressure. The volume of the helium at – 3°C temperature and 0.5 atmosphere pressure will be

" ["question_id"]=> string(4) "3281" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13009" ["question_id"]=> string(4) "3281" ["opt_desc"]=> string(29) "

500 m3

" } [1]=> array(3) { ["option_id"]=> string(5) "13010" ["question_id"]=> string(4) "3281" ["opt_desc"]=> string(29) "

700 m3

" } [2]=> array(3) { ["option_id"]=> string(5) "13011" ["question_id"]=> string(4) "3281" ["opt_desc"]=> string(29) "

900 m3

" } [3]=> array(3) { ["option_id"]=> string(5) "13012" ["question_id"]=> string(4) "3281" ["opt_desc"]=> string(30) "

1000 m3

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3321" ["question_id"]=> string(4) "3281" ["option_id"]=> string(5) "13011" } } } [85]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "238" ["ques_text"]=> string(172) "

A gas at a certain volume and temperature has pressure 75 cm. If the mass of the gas is doubled at the same volume and temperature, its new pressure is

" ["question_id"]=> string(4) "3282" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13013" ["question_id"]=> string(4) "3282" ["opt_desc"]=> string(28) "

37.5 cm

" } [1]=> array(3) { ["option_id"]=> string(5) "13014" ["question_id"]=> string(4) "3282" ["opt_desc"]=> string(26) "

75 cm

" } [2]=> array(3) { ["option_id"]=> string(5) "13015" ["question_id"]=> string(4) "3282" ["opt_desc"]=> string(27) "

150 cm

" } [3]=> array(3) { ["option_id"]=> string(5) "13016" ["question_id"]=> string(4) "3282" ["opt_desc"]=> string(27) "

300 cm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3322" ["question_id"]=> string(4) "3282" ["option_id"]=> string(5) "13015" } } } [86]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "238" ["ques_text"]=> string(419) "

A cylinder of capacity 20 litres is filled with H2 gas. The total average kinetic energy of translatory motion of its molecules is 1.5 x 105 J. The pressure of hydrogen in the cylinder is                             [MP PET 1993]

" ["question_id"]=> string(4) "3283" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13017" ["question_id"]=> string(4) "3283" ["opt_desc"]=> string(46) "

2 x 106 N/m2

" } [1]=> array(3) { ["option_id"]=> string(5) "13018" ["question_id"]=> string(4) "3283" ["opt_desc"]=> string(46) "

3 x 106 N/m2

" } [2]=> array(3) { ["option_id"]=> string(5) "13019" ["question_id"]=> string(4) "3283" ["opt_desc"]=> string(46) "

4 x 106 N/m2

" } [3]=> array(3) { ["option_id"]=> string(5) "13020" ["question_id"]=> string(4) "3283" ["opt_desc"]=> string(46) "

5 x 106 N/m2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3323" ["question_id"]=> string(4) "3283" ["option_id"]=> string(5) "13020" } } } [87]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "238" ["ques_text"]=> string(306) "

The root mean square speed of hydrogen molecules of an ideal hydrogen gas kept in a gas chamber at 0°C is 3180 m/s. The pressure on the hydrogen gas is (Density of hydrogen gas is 8.99 x 10-2 kg/m3, 1 atmosphere=1.01 x 105 N/m2)

" ["question_id"]=> string(4) "3284" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13021" ["question_id"]=> string(4) "3284" ["opt_desc"]=> string(28) "

0.1 atm

" } [1]=> array(3) { ["option_id"]=> string(5) "13022" ["question_id"]=> string(4) "3284" ["opt_desc"]=> string(28) "

1.5 atm

" } [2]=> array(3) { ["option_id"]=> string(5) "13023" ["question_id"]=> string(4) "3284" ["opt_desc"]=> string(28) "

2.0 atm

" } [3]=> array(3) { ["option_id"]=> string(5) "13024" ["question_id"]=> string(4) "3284" ["opt_desc"]=> string(28) "

3.0 atm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3324" ["question_id"]=> string(4) "3284" ["option_id"]=> string(5) "13024" } } } [88]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "238" ["ques_text"]=> string(342) "

Find the ratio of specific heat at constant pressure to the specific heat constant volume for NH3                                                 [RPMT 2003]

" ["question_id"]=> string(4) "3286" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13029" ["question_id"]=> string(4) "3286" ["opt_desc"]=> string(16) "

1.33

" } [1]=> array(3) { ["option_id"]=> string(5) "13030" ["question_id"]=> string(4) "3286" ["opt_desc"]=> string(16) "

1.44

" } [2]=> array(3) { ["option_id"]=> string(5) "13031" ["question_id"]=> string(4) "3286" ["opt_desc"]=> string(16) "

1.28

" } [3]=> array(3) { ["option_id"]=> string(5) "13032" ["question_id"]=> string(4) "3286" ["opt_desc"]=> string(16) "

1.67

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3326" ["question_id"]=> string(4) "3286" ["option_id"]=> string(5) "13031" } } } [89]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "238" ["ques_text"]=> string(481) "

A cylinder contained 10 kg of gas at pressure 107 N/m2. The quantity of gas taken out of cylinder if final pressure is 2.5 x 106 N/m is (assume the temperature of gas is constant)                                  

[EAMCET (Med.) 1998]

" ["question_id"]=> string(4) "3289" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13041" ["question_id"]=> string(4) "3289" ["opt_desc"]=> string(16) "

Zero

" } [1]=> array(3) { ["option_id"]=> string(5) "13042" ["question_id"]=> string(4) "3289" ["opt_desc"]=> string(27) "

7.5 kg

" } [2]=> array(3) { ["option_id"]=> string(5) "13043" ["question_id"]=> string(4) "3289" ["opt_desc"]=> string(27) "

2.5 kg

" } [3]=> array(3) { ["option_id"]=> string(5) "13044" ["question_id"]=> string(4) "3289" ["opt_desc"]=> string(25) "

5 kg

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3329" ["question_id"]=> string(4) "3289" ["option_id"]=> string(5) "13042" } } } [90]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "238" ["ques_text"]=> string(196) "

Gas at a pressure P0 in contained as a vessel. If the masses of all the molecules are halved and their speeds are doubled, the resulting pressure P will be equal to

" ["question_id"]=> string(4) "3292" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13053" ["question_id"]=> string(4) "3292" ["opt_desc"]=> string(27) "

4 P0

" } [1]=> array(3) { ["option_id"]=> string(5) "13054" ["question_id"]=> string(4) "3292" ["opt_desc"]=> string(27) "

2 P0

" } [2]=> array(3) { ["option_id"]=> string(5) "13055" ["question_id"]=> string(4) "3292" ["opt_desc"]=> string(25) "

P0

" } [3]=> array(3) { ["option_id"]=> string(5) "13056" ["question_id"]=> string(4) "3292" ["opt_desc"]=> string(27) "

P0/2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3332" ["question_id"]=> string(4) "3292" ["option_id"]=> string(5) "13054" } } } [91]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "238" ["ques_text"]=> string(562) "

If the intermolecular forces vanish away, the volume occupied by the molecules contained in 4.5 kg water at standard temperature and pressure will be given by                                                          

[CPMT 1989]

" ["question_id"]=> string(4) "3294" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13061" ["question_id"]=> string(4) "3294" ["opt_desc"]=> string(29) "

5.6 m3

" } [1]=> array(3) { ["option_id"]=> string(5) "13062" ["question_id"]=> string(4) "3294" ["opt_desc"]=> string(29) "

4.5 m3

" } [2]=> array(3) { ["option_id"]=> string(5) "13063" ["question_id"]=> string(4) "3294" ["opt_desc"]=> string(22) "

11.2 litre

" } [3]=> array(3) { ["option_id"]=> string(5) "13064" ["question_id"]=> string(4) "3294" ["opt_desc"]=> string(30) "

11.2 m3

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3334" ["question_id"]=> string(4) "3294" ["option_id"]=> string(5) "13061" } } } [92]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "239" ["ques_text"]=> string(140) "

When volume of system is increased two times and temperature is decreased half of its initial temperature, then pressure becomes

" ["question_id"]=> string(4) "3295" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13065" ["question_id"]=> string(4) "3295" ["opt_desc"]=> string(19) "

2 times

" } [1]=> array(3) { ["option_id"]=> string(5) "13066" ["question_id"]=> string(4) "3295" ["opt_desc"]=> string(19) "

4 times

" } [2]=> array(3) { ["option_id"]=> string(5) "13067" ["question_id"]=> string(4) "3295" ["opt_desc"]=> string(23) "

1 / 4 times

" } [3]=> array(3) { ["option_id"]=> string(5) "13068" ["question_id"]=> string(4) "3295" ["opt_desc"]=> string(23) "

1 / 2 times

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3335" ["question_id"]=> string(4) "3295" ["option_id"]=> string(5) "13067" } } } [93]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "239" ["ques_text"]=> string(363) "

A flask contains 10-3 m3 gas. At a temperature, the number of molecules of oxygen are 3.0 x 1022. The mass of an oxygen molecule is 5.3 x 10-26 kg and at that temperature the rms velocity of molecules is 400 m/s. The pressure in N/m2 of the gas in the flask is

" ["question_id"]=> string(4) "3296" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13069" ["question_id"]=> string(4) "3296" ["opt_desc"]=> string(33) "

8.48 x 104

" } [1]=> array(3) { ["option_id"]=> string(5) "13070" ["question_id"]=> string(4) "3296" ["opt_desc"]=> string(33) "

2.87 x 104

" } [2]=> array(3) { ["option_id"]=> string(5) "13071" ["question_id"]=> string(4) "3296" ["opt_desc"]=> string(34) "

25.44 x 104

" } [3]=> array(3) { ["option_id"]=> string(5) "13072" ["question_id"]=> string(4) "3296" ["opt_desc"]=> string(34) "

12.72 x 104

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3336" ["question_id"]=> string(4) "3296" ["option_id"]=> string(5) "13069" } } } [94]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "239" ["ques_text"]=> string(554) "

The temperature of a gas is raised while its volume remains constant, the pressure exerted by a gas on the walls of the container increases because its molecules                                                         

[CBSE PMT 1993]

" ["question_id"]=> string(4) "3297" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13073" ["question_id"]=> string(4) "3297" ["opt_desc"]=> string(48) "

Lose more kinetic energy to the wall

" } [1]=> array(3) { ["option_id"]=> string(5) "13074" ["question_id"]=> string(4) "3297" ["opt_desc"]=> string(59) "

Are in contact with the wall for a shorter time

" } [2]=> array(3) { ["option_id"]=> string(5) "13075" ["question_id"]=> string(4) "3297" ["opt_desc"]=> string(61) "

Strike the wall more often with higher velocities

" } [3]=> array(3) { ["option_id"]=> string(5) "13076" ["question_id"]=> string(4) "3297" ["opt_desc"]=> string(50) "

Collide with each other less frequency

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3337" ["question_id"]=> string(4) "3297" ["option_id"]=> string(5) "13075" } } } [95]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "239" ["ques_text"]=> string(3152) "

The adjoining figure shows graph of pressure and volume of a gas at two temperatures T1 and T2. Which of the following interferences is correct

" ["question_id"]=> string(4) "3299" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13081" ["question_id"]=> string(4) "3299" ["opt_desc"]=> string(42) "

T1>T2

" } [1]=> array(3) { ["option_id"]=> string(5) "13082" ["question_id"]=> string(4) "3299" ["opt_desc"]=> string(39) "

T1=T2

" } [2]=> array(3) { ["option_id"]=> string(5) "13083" ["question_id"]=> string(4) "3299" ["opt_desc"]=> string(42) "

T1<T2

" } [3]=> array(3) { ["option_id"]=> string(5) "13084" ["question_id"]=> string(4) "3299" ["opt_desc"]=> string(40) "

No interference can be drawn

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3339" ["question_id"]=> string(4) "3299" ["option_id"]=> string(5) "13083" } } } [96]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "239" ["ques_text"]=> string(198) "

A perfect gas at 27°C is heated at constant pressure to 327°C. If original volume of gas at 27°C is V then volume at 327°C is

" ["question_id"]=> string(4) "3300" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13085" ["question_id"]=> string(4) "3300" ["opt_desc"]=> string(22) "

V

" } [1]=> array(3) { ["option_id"]=> string(5) "13086" ["question_id"]=> string(4) "3300" ["opt_desc"]=> string(23) "

3V

" } [2]=> array(3) { ["option_id"]=> string(5) "13087" ["question_id"]=> string(4) "3300" ["opt_desc"]=> string(23) "

2V

" } [3]=> array(3) { ["option_id"]=> string(5) "13088" ["question_id"]=> string(4) "3300" ["opt_desc"]=> string(24) "

V/2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3340" ["question_id"]=> string(4) "3300" ["option_id"]=> string(5) "13087" } } } [97]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "240" ["ques_text"]=> string(826) "

A box containing N molecules of a perfect gas at temperature T1 and pressure P1. The number of molecules in the box is doubled keeping the total kinetic energy of the gas same as before. If the new pressure is P2 and temperature T2, then                                                                                    [MP PMT 1992]

" ["question_id"]=> string(4) "3302" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13093" ["question_id"]=> string(4) "3302" ["opt_desc"]=> string(68) "

P2=P1, T2=T1

" } [1]=> array(3) { ["option_id"]=> string(5) "13094" ["question_id"]=> string(4) "3302" ["opt_desc"]=> string(70) "

P2=P1, T2=T1/2

" } [2]=> array(3) { ["option_id"]=> string(5) "13095" ["question_id"]=> string(4) "3302" ["opt_desc"]=> string(69) "

P2=2P1, T2=T1

" } [3]=> array(3) { ["option_id"]=> string(5) "13096" ["question_id"]=> string(4) "3302" ["opt_desc"]=> string(71) "

P2=2P1, T2=T1/2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3342" ["question_id"]=> string(4) "3302" ["option_id"]=> string(5) "13094" } } } [98]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "240" ["ques_text"]=> string(202) "

At constant temperature on increasing the pressure of a gas by 5% will decrease its volume by            [MP PET 2002]

" ["question_id"]=> string(4) "3303" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13097" ["question_id"]=> string(4) "3303" ["opt_desc"]=> string(14) "

5%

" } [1]=> array(3) { ["option_id"]=> string(5) "13098" ["question_id"]=> string(4) "3303" ["opt_desc"]=> string(17) "

5.26%

" } [2]=> array(3) { ["option_id"]=> string(5) "13099" ["question_id"]=> string(4) "3303" ["opt_desc"]=> string(17) "

4.26%

" } [3]=> array(3) { ["option_id"]=> string(5) "13100" ["question_id"]=> string(4) "3303" ["opt_desc"]=> string(17) "

4.76%

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3343" ["question_id"]=> string(4) "3303" ["option_id"]=> string(5) "13100" } } } [99]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "240" ["ques_text"]=> string(320) "

An air bubble of volume v0 is released by a fish at a depth h in a lake. The bubble rises to the surface. Assume constant temperature and standard atmospheric pressure P above the lake. The volume of the bubble just before touching the surface will be (density of water is ρ)

" ["question_id"]=> string(4) "3304" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13101" ["question_id"]=> string(4) "3304" ["opt_desc"]=> string(25) "

v0

" } [1]=> array(3) { ["option_id"]=> string(5) "13102" ["question_id"]=> string(4) "3304" ["opt_desc"]=> string(36) "

v0(ρgh/P)

" } [2]=> array(3) { ["option_id"]=> string(5) "13103" ["question_id"]=> string(4) "3304" ["opt_desc"]=> string(40) "

V0/(1+ ρgh/P)

" } [3]=> array(3) { ["option_id"]=> string(5) "13104" ["question_id"]=> string(4) "3304" ["opt_desc"]=> string(39) "

V0(1+ ρgh/p)

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3344" ["question_id"]=> string(4) "3304" ["option_id"]=> string(5) "13104" } } } [100]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "240" ["ques_text"]=> string(2021) "

The expansion of unit mass of a perfect gas at constant pressure is shown in the diagram. Here

" ["question_id"]=> string(4) "3305" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13105" ["question_id"]=> string(4) "3305" ["opt_desc"]=> string(73) "

a = volume, b = °C temperature

" } [1]=> array(3) { ["option_id"]=> string(5) "13106" ["question_id"]=> string(4) "3305" ["opt_desc"]=> string(68) "

a = volume, b = K temperature

" } [2]=> array(3) { ["option_id"]=> string(5) "13107" ["question_id"]=> string(4) "3305" ["opt_desc"]=> string(73) "

a = °C temperature, b = volume

" } [3]=> array(3) { ["option_id"]=> string(5) "13108" ["question_id"]=> string(4) "3305" ["opt_desc"]=> string(68) "

a = K temperature, b = volume

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3345" ["question_id"]=> string(4) "3305" ["option_id"]=> string(5) "13107" } } } [101]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "240" ["ques_text"]=> string(147) "

If pressure of a gas contained in a closed vessel is increased by 0.4% when heated by 1°C, the initial temperature must be

" ["question_id"]=> string(4) "3306" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13109" ["question_id"]=> string(4) "3306" ["opt_desc"]=> string(26) "

250 K

" } [1]=> array(3) { ["option_id"]=> string(5) "13110" ["question_id"]=> string(4) "3306" ["opt_desc"]=> string(30) "

250°C

" } [2]=> array(3) { ["option_id"]=> string(5) "13111" ["question_id"]=> string(4) "3306" ["opt_desc"]=> string(27) "

2500 K

" } [3]=> array(3) { ["option_id"]=> string(5) "13112" ["question_id"]=> string(4) "3306" ["opt_desc"]=> string(29) "

25°C

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3346" ["question_id"]=> string(4) "3306" ["option_id"]=> string(5) "13109" } } } [102]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "240" ["ques_text"]=> string(269) "

A closed vessel contains 8g of oxygen and 7g of nitrogen. The total pressure is 10 atm at a given temperature. If now oxygen is absorbed by introducing a suitable absorbent the pressure of the remaining gas in atm will be

" ["question_id"]=> string(4) "3308" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13117" ["question_id"]=> string(4) "3308" ["opt_desc"]=> string(13) "

2

" } [1]=> array(3) { ["option_id"]=> string(5) "13118" ["question_id"]=> string(4) "3308" ["opt_desc"]=> string(14) "

10

" } [2]=> array(3) { ["option_id"]=> string(5) "13119" ["question_id"]=> string(4) "3308" ["opt_desc"]=> string(13) "

4

" } [3]=> array(3) { ["option_id"]=> string(5) "13120" ["question_id"]=> string(4) "3308" ["opt_desc"]=> string(13) "

5

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3348" ["question_id"]=> string(4) "3308" ["option_id"]=> string(5) "13120" } } } [103]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "240" ["ques_text"]=> string(394) "

Energy of all molecules of a monoatomic gas having a volume V and pressure P is 3/2PV. The total translational kinetic energy of all molecules of a diatomic gas as the same volume and pressure is                        [UPSEAT 2002]

" ["question_id"]=> string(4) "3309" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13121" ["question_id"]=> string(4) "3309" ["opt_desc"]=> string(17) "

1/2PV

" } [1]=> array(3) { ["option_id"]=> string(5) "13122" ["question_id"]=> string(4) "3309" ["opt_desc"]=> string(17) "

3/2PV

" } [2]=> array(3) { ["option_id"]=> string(5) "13123" ["question_id"]=> string(4) "3309" ["opt_desc"]=> string(17) "

5/2PV

" } [3]=> array(3) { ["option_id"]=> string(5) "13124" ["question_id"]=> string(4) "3309" ["opt_desc"]=> string(25) "

3 PV

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3349" ["question_id"]=> string(4) "3309" ["option_id"]=> string(5) "13122" } } } [104]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "240" ["ques_text"]=> string(224) "

At standard temperature and pressure the density of a gas is 1.3 gm/ m3 and the speed of the sound in gas is 330 m/sec. Then the degree of freedom of the gas will be

" ["question_id"]=> string(4) "3310" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13125" ["question_id"]=> string(4) "3310" ["opt_desc"]=> string(13) "

3

" } [1]=> array(3) { ["option_id"]=> string(5) "13126" ["question_id"]=> string(4) "3310" ["opt_desc"]=> string(13) "

4

" } [2]=> array(3) { ["option_id"]=> string(5) "13127" ["question_id"]=> string(4) "3310" ["opt_desc"]=> string(13) "

5

" } [3]=> array(3) { ["option_id"]=> string(5) "13128" ["question_id"]=> string(4) "3310" ["opt_desc"]=> string(13) "

6

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3350" ["question_id"]=> string(4) "3310" ["option_id"]=> string(5) "13127" } } } [105]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "240" ["ques_text"]=> string(257) "

The mean free path of nitrogen molecules at a pressure of 1.0 atm and temperature 0°C is 0.8 x 10-7m. If the number of density of molecules is 2.7 x 1025perm3, then the molecular diameter is

" ["question_id"]=> string(4) "3311" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13129" ["question_id"]=> string(4) "3311" ["opt_desc"]=> string(18) "

3.2 nm

" } [1]=> array(3) { ["option_id"]=> string(5) "13130" ["question_id"]=> string(4) "3311" ["opt_desc"]=> string(113) "

3.2Å

" } [2]=> array(3) { ["option_id"]=> string(5) "13131" ["question_id"]=> string(4) "3311" ["opt_desc"]=> string(24) "

3.2 µm

" } [3]=> array(3) { ["option_id"]=> string(5) "13132" ["question_id"]=> string(4) "3311" ["opt_desc"]=> string(17) "

2.3mm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3351" ["question_id"]=> string(4) "3311" ["option_id"]=> string(5) "13130" } } } [106]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "240" ["ques_text"]=> string(333) "

40 calories of heat is needed to raise the temperature of 1 mole of an ideal monoatomic gas from 20°C to 30°C at a constant pressure. The amount of heat required to raise its temperature over the same interval at a constant volume (R=2caloriemole-1K-1) is

" ["question_id"]=> string(4) "3312" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13133" ["question_id"]=> string(4) "3312" ["opt_desc"]=> string(31) "

20 calorie

" } [1]=> array(3) { ["option_id"]=> string(5) "13134" ["question_id"]=> string(4) "3312" ["opt_desc"]=> string(31) "

40 calorie

" } [2]=> array(3) { ["option_id"]=> string(5) "13135" ["question_id"]=> string(4) "3312" ["opt_desc"]=> string(31) "

60 calorie

" } [3]=> array(3) { ["option_id"]=> string(5) "13136" ["question_id"]=> string(4) "3312" ["opt_desc"]=> string(31) "

80 calorie

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3352" ["question_id"]=> string(4) "3312" ["option_id"]=> string(5) "13133" } } } [107]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "240" ["ques_text"]=> string(188) "

A monoatomic gas expands at constant pressure on heating. The percentage of heat supplied that increases the internal energy of the gas and that is involved in the expansion is

" ["question_id"]=> string(4) "3315" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13145" ["question_id"]=> string(4) "3315" ["opt_desc"]=> string(20) "

75%, 25%

" } [1]=> array(3) { ["option_id"]=> string(5) "13146" ["question_id"]=> string(4) "3315" ["opt_desc"]=> string(20) "

25%, 75%

" } [2]=> array(3) { ["option_id"]=> string(5) "13147" ["question_id"]=> string(4) "3315" ["opt_desc"]=> string(20) "

60%, 40%

" } [3]=> array(3) { ["option_id"]=> string(5) "13148" ["question_id"]=> string(4) "3315" ["opt_desc"]=> string(20) "

40%, 60%

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3355" ["question_id"]=> string(4) "3315" ["option_id"]=> string(5) "13147" } } } [108]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "241" ["ques_text"]=> string(297) "

The value of Cp-Cv=1.00 R  for a gas in state A and Cp-Cv=1.06 R  in another state. If PA and PB denote the pressure and TA and TB denote the temperatures in the two states, then

" ["question_id"]=> string(4) "3318" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13157" ["question_id"]=> string(4) "3318" ["opt_desc"]=> string(71) "

PA=PB, TA>TB

" } [1]=> array(3) { ["option_id"]=> string(5) "13158" ["question_id"]=> string(4) "3318" ["opt_desc"]=> string(71) "

PA>PB, TA=TB

" } [2]=> array(3) { ["option_id"]=> string(5) "13159" ["question_id"]=> string(4) "3318" ["opt_desc"]=> string(74) "

PA<PB, TA>TB

" } [3]=> array(3) { ["option_id"]=> string(5) "13160" ["question_id"]=> string(4) "3318" ["opt_desc"]=> string(74) "

PA>PB, TA<TB

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3358" ["question_id"]=> string(4) "3318" ["option_id"]=> string(5) "13159" } } } [109]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "241" ["ques_text"]=> string(161) "

When an ideal diatomic gas is heated at constant pressure, the fraction of the heat energy supplied which increases the internal energy of the gas is

" ["question_id"]=> string(4) "3319" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13161" ["question_id"]=> string(4) "3319" ["opt_desc"]=> string(15) "

2/5

" } [1]=> array(3) { ["option_id"]=> string(5) "13162" ["question_id"]=> string(4) "3319" ["opt_desc"]=> string(15) "

3/5

" } [2]=> array(3) { ["option_id"]=> string(5) "13163" ["question_id"]=> string(4) "3319" ["opt_desc"]=> string(15) "

3/7

" } [3]=> array(3) { ["option_id"]=> string(5) "13164" ["question_id"]=> string(4) "3319" ["opt_desc"]=> string(15) "

5/7

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3359" ["question_id"]=> string(4) "3319" ["option_id"]=> string(5) "13164" } } } [110]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "241" ["ques_text"]=> string(318) "

The capacity of a vessel is 3 litres. It contains 6 gm oxygen, 8 gm nitrogen and 5 gm CO2 mixture at 27°C. If R = 8.31 J/mole ´ kelvin, then the pressure in the vessel in N/m2 will be (approx.)

" ["question_id"]=> string(4) "3320" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13165" ["question_id"]=> string(4) "3320" ["opt_desc"]=> string(30) "

5 x 105

" } [1]=> array(3) { ["option_id"]=> string(5) "13166" ["question_id"]=> string(4) "3320" ["opt_desc"]=> string(30) "

5 x 104

" } [2]=> array(3) { ["option_id"]=> string(5) "13167" ["question_id"]=> string(4) "3320" ["opt_desc"]=> string(26) "

106

" } [3]=> array(3) { ["option_id"]=> string(5) "13168" ["question_id"]=> string(4) "3320" ["opt_desc"]=> string(26) "

105

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3360" ["question_id"]=> string(4) "3320" ["option_id"]=> string(5) "13165" } } } [111]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "241" ["ques_text"]=> string(2701) "

Pressure versus temperature graph of an ideal gas of equal number of moles of different volumes are plotted as shown in figure. Choose the correct alternative

" ["question_id"]=> string(4) "3321" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13169" ["question_id"]=> string(4) "3321" ["opt_desc"]=> string(103) "

V1=V2, V3=V4 and V2>V3

" } [1]=> array(3) { ["option_id"]=> string(5) "13170" ["question_id"]=> string(4) "3321" ["opt_desc"]=> string(103) "

V1=V2, V3=V4 and V2<V3

" } [2]=> array(3) { ["option_id"]=> string(5) "13171" ["question_id"]=> string(4) "3321" ["opt_desc"]=> string(68) "

V1=V2= V3=V4

" } [3]=> array(3) { ["option_id"]=> string(5) "13172" ["question_id"]=> string(4) "3321" ["opt_desc"]=> string(76) "

V4>V3>V2>V1

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3361" ["question_id"]=> string(4) "3321" ["option_id"]=> string(5) "13169" } } } [112]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "241" ["ques_text"]=> string(289) "

An ideal gas is initially at a temperature T and volume V. Its volume is increased by ΔV due to an increase in temperature ΔT, pressure remaining constant. The quantity δ= ΔV/VΔT  varies with temperature as

" ["question_id"]=> string(4) "3322" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13173" ["question_id"]=> string(4) "3322" ["opt_desc"]=> string(1395) "

" } [1]=> array(3) { ["option_id"]=> string(5) "13174" ["question_id"]=> string(4) "3322" ["opt_desc"]=> string(1831) "

" } [2]=> array(3) { ["option_id"]=> string(5) "13175" ["question_id"]=> string(4) "3322" ["opt_desc"]=> string(1943) "

" } [3]=> array(3) { ["option_id"]=> string(5) "13176" ["question_id"]=> string(4) "3322" ["opt_desc"]=> string(1815) "

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3362" ["question_id"]=> string(4) "3322" ["option_id"]=> string(5) "13175" } } } [113]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "241" ["ques_text"]=> string(4186) "

An experiment is carried on a fixed amount of gas at different temperatures and at high pressure such that it deviates from the ideal gas behaviour. The variation of PV/RT with P is shown in the diagram. The correct variation will correspond to                                                                           [CPMT 1988]

" ["question_id"]=> string(4) "3327" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13193" ["question_id"]=> string(4) "3327" ["opt_desc"]=> string(28) "

Curve A

" } [1]=> array(3) { ["option_id"]=> string(5) "13194" ["question_id"]=> string(4) "3327" ["opt_desc"]=> string(28) "

Curve B

" } [2]=> array(3) { ["option_id"]=> string(5) "13195" ["question_id"]=> string(4) "3327" ["opt_desc"]=> string(28) "

Curve C

" } [3]=> array(3) { ["option_id"]=> string(5) "13196" ["question_id"]=> string(4) "3327" ["opt_desc"]=> string(28) "

Curve D

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3367" ["question_id"]=> string(4) "3327" ["option_id"]=> string(5) "13194" } } } [114]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "241" ["ques_text"]=> string(328) "

Two containers of equal volume contain the same gas at pressures P1 and P2 and absolute temperatures T1 and T2 respectively. On joining the vessels, the gas reaches a common pressure P and common temperature T. The ratio P/T is equal to

" ["question_id"]=> string(4) "3330" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13205" ["question_id"]=> string(4) "3330" ["opt_desc"]=> string(67) "

P1/T1+P2/T2

" } [1]=> array(3) { ["option_id"]=> string(5) "13206" ["question_id"]=> string(4) "3330" ["opt_desc"]=> string(107) "

P1T1+P2T2/(T1+T2)2

" } [2]=> array(3) { ["option_id"]=> string(5) "13207" ["question_id"]=> string(4) "3330" ["opt_desc"]=> string(107) "

P1T2+P2T1/(T1+T2)2

" } [3]=> array(3) { ["option_id"]=> string(5) "13208" ["question_id"]=> string(4) "3330" ["opt_desc"]=> string(69) "

P1/2T1+P2/2T2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3370" ["question_id"]=> string(4) "3330" ["option_id"]=> string(5) "13208" } } } [115]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "241" ["ques_text"]=> string(7791) "

Two identical glass bulbs are interconnected by a thin glass tube. A gas is filled in these bulbs at N.T.P. If one bulb is placed in ice and another bulb is placed in hot bath, then the pressure of the gas becomes 1.5 times. The temperature of hot bath will be

" ["question_id"]=> string(4) "3331" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13209" ["question_id"]=> string(4) "3331" ["opt_desc"]=> string(30) "

100°C

" } [1]=> array(3) { ["option_id"]=> string(5) "13210" ["question_id"]=> string(4) "3331" ["opt_desc"]=> string(30) "

182°C

" } [2]=> array(3) { ["option_id"]=> string(5) "13211" ["question_id"]=> string(4) "3331" ["opt_desc"]=> string(30) "

256°C

" } [3]=> array(3) { ["option_id"]=> string(5) "13212" ["question_id"]=> string(4) "3331" ["opt_desc"]=> string(30) "

546°C

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3371" ["question_id"]=> string(4) "3331" ["option_id"]=> string(5) "13212" } } } [116]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "242" ["ques_text"]=> string(294) "

A flask is filled with 13 gm of an ideal gas at 27°C and its temperature is raised to 52°C. The mass of the gas that has to be released to maintain the temperature of the gas in the flask at 52°C and the pressure remaining the same is

" ["question_id"]=> string(4) "3334" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13221" ["question_id"]=> string(4) "3334" ["opt_desc"]=> string(26) "

2.5 g

" } [1]=> array(3) { ["option_id"]=> string(5) "13222" ["question_id"]=> string(4) "3334" ["opt_desc"]=> string(26) "

2.0 g

" } [2]=> array(3) { ["option_id"]=> string(5) "13223" ["question_id"]=> string(4) "3334" ["opt_desc"]=> string(26) "

1.5 g

" } [3]=> array(3) { ["option_id"]=> string(5) "13224" ["question_id"]=> string(4) "3334" ["opt_desc"]=> string(26) "

1.0 g

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3374" ["question_id"]=> string(4) "3334" ["option_id"]=> string(5) "13224" } } } [117]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "242" ["ques_text"]=> string(4862) "

The expansion of an ideal gas of mass m at a constant pressure P is given by the straight line D. Then the expansion of the same ideal gas of mass 2m at a pressure P/ 2 is given by the straight line

" ["question_id"]=> string(4) "3335" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13225" ["question_id"]=> string(4) "3335" ["opt_desc"]=> string(13) "

E

" } [1]=> array(3) { ["option_id"]=> string(5) "13226" ["question_id"]=> string(4) "3335" ["opt_desc"]=> string(13) "

C

" } [2]=> array(3) { ["option_id"]=> string(5) "13227" ["question_id"]=> string(4) "3335" ["opt_desc"]=> string(13) "

B

" } [3]=> array(3) { ["option_id"]=> string(5) "13228" ["question_id"]=> string(4) "3335" ["opt_desc"]=> string(13) "

A

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3375" ["question_id"]=> string(4) "3335" ["option_id"]=> string(5) "13228" } } } [118]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "242" ["ques_text"]=> string(4941) "

An ideal monoatomic gas is confined in a cylinder by a spring-loaded piston if cross-section 8 x 10-3m2. Initially the gas is at 300K and occupies a volume of 2.4 x 10-3m3 and the spring is in a relaxed state. The gas is heated by a small heater coil H. The force constant of the spring is 8000 N/m, and the atmospheric pressure is 1.0 x 105Pa. The cylinder and piston are thermally insulated. The piston and the spring are massless and there is no friction between the piston and cylinder. There is no heat loss through heater coil wire leads and thermal capacity of the heater coil is negligible. With all the above assumptions, if the gas is heated by the heater until the piston moves out slowly by 0.1m, then the final temperature is

" ["question_id"]=> string(4) "3337" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13233" ["question_id"]=> string(4) "3337" ["opt_desc"]=> string(26) "

400 K

" } [1]=> array(3) { ["option_id"]=> string(5) "13234" ["question_id"]=> string(4) "3337" ["opt_desc"]=> string(26) "

800 K

" } [2]=> array(3) { ["option_id"]=> string(5) "13235" ["question_id"]=> string(4) "3337" ["opt_desc"]=> string(27) "

1200 K

" } [3]=> array(3) { ["option_id"]=> string(5) "13236" ["question_id"]=> string(4) "3337" ["opt_desc"]=> string(26) "

300 K

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3378" ["question_id"]=> string(4) "3337" ["option_id"]=> string(5) "13234" } } } [119]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "242" ["ques_text"]=> string(447) "

Two identical containers each of volume V0 are joined by a small pipe. The containers contain identical gases at temperature T0 and pressure P0. One container is heated to temperature 2T0 while maintaining the other at the same temperature. The common pressure of the gas is P and n is the number of moles of gas in container at temperature 2T0

 

" ["question_id"]=> string(4) "3340" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13245" ["question_id"]=> string(4) "3340" ["opt_desc"]=> string(28) "

P=2P0

" } [1]=> array(3) { ["option_id"]=> string(5) "13246" ["question_id"]=> string(4) "3340" ["opt_desc"]=> string(30) "

P=4/3P0

" } [2]=> array(3) { ["option_id"]=> string(5) "13247" ["question_id"]=> string(4) "3340" ["opt_desc"]=> string(59) "

n=2/3.P0V0/RT0

" } [3]=> array(3) { ["option_id"]=> string(5) "13248" ["question_id"]=> string(4) "3340" ["opt_desc"]=> string(59) "

n=3/2.P0V0/RT0

" } } ["Answer"]=> array(2) { [0]=> array(3) { ["answer_id"]=> string(4) "3381" ["question_id"]=> string(4) "3340" ["option_id"]=> string(5) "13246" } [1]=> array(3) { ["answer_id"]=> string(4) "3382" ["question_id"]=> string(4) "3340" ["option_id"]=> string(5) "13247" } } } [120]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "243" ["ques_text"]=> string(176) "

The average degrees of freedom per molecule for a gas is 6. The gas performs 25 J of work when it expands at constant pressure. The heat absorbed by gas is

" ["question_id"]=> string(4) "3341" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13249" ["question_id"]=> string(4) "3341" ["opt_desc"]=> string(25) "

75 J

" } [1]=> array(3) { ["option_id"]=> string(5) "13250" ["question_id"]=> string(4) "3341" ["opt_desc"]=> string(26) "

100 J

" } [2]=> array(3) { ["option_id"]=> string(5) "13251" ["question_id"]=> string(4) "3341" ["opt_desc"]=> string(26) "

150 J

" } [3]=> array(3) { ["option_id"]=> string(5) "13252" ["question_id"]=> string(4) "3341" ["opt_desc"]=> string(26) "

125 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3383" ["question_id"]=> string(4) "3341" ["option_id"]=> string(5) "13250" } } } [121]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "243" ["ques_text"]=> string(90) "

If the mean free path of atoms is doubled then the pressure of gas will become

" ["question_id"]=> string(4) "3345" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13265" ["question_id"]=> string(4) "3345" ["opt_desc"]=> string(15) "

P/4

" } [1]=> array(3) { ["option_id"]=> string(5) "13266" ["question_id"]=> string(4) "3345" ["opt_desc"]=> string(15) "

P/2

" } [2]=> array(3) { ["option_id"]=> string(5) "13267" ["question_id"]=> string(4) "3345" ["opt_desc"]=> string(15) "

P/8

" } [3]=> array(3) { ["option_id"]=> string(5) "13268" ["question_id"]=> string(4) "3345" ["opt_desc"]=> string(13) "

P

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3387" ["question_id"]=> string(4) "3345" ["option_id"]=> string(5) "13266" } } } [122]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "243" ["ques_text"]=> string(303) "

The temperature, pressure and volume of two gases X and Y are T, P and V respectively. When the gases are mixed then the volume and temperature of mixture become V and T respectively. The pressure and mass of the mixture will be

" ["question_id"]=> string(4) "3347" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13273" ["question_id"]=> string(4) "3347" ["opt_desc"]=> string(39) "

2P and 2M

" } [1]=> array(3) { ["option_id"]=> string(5) "13274" ["question_id"]=> string(4) "3347" ["opt_desc"]=> string(37) "

P and M

" } [2]=> array(3) { ["option_id"]=> string(5) "13275" ["question_id"]=> string(4) "3347" ["opt_desc"]=> string(38) "

P and 2M

" } [3]=> array(3) { ["option_id"]=> string(5) "13276" ["question_id"]=> string(4) "3347" ["opt_desc"]=> string(38) "

2P and M

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3389" ["question_id"]=> string(4) "3347" ["option_id"]=> string(5) "13273" } } } [123]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "243" ["ques_text"]=> string(198) "

A perfect gas at 27°C is heated at constant pressure to 327°C. If original volume of gas at 27°C is V then volume at 327°C is

" ["question_id"]=> string(4) "3349" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13281" ["question_id"]=> string(4) "3349" ["opt_desc"]=> string(13) "

V

" } [1]=> array(3) { ["option_id"]=> string(5) "13282" ["question_id"]=> string(4) "3349" ["opt_desc"]=> string(23) "

3V

" } [2]=> array(3) { ["option_id"]=> string(5) "13283" ["question_id"]=> string(4) "3349" ["opt_desc"]=> string(23) "

2V

" } [3]=> array(3) { ["option_id"]=> string(5) "13284" ["question_id"]=> string(4) "3349" ["opt_desc"]=> string(24) "

V/2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3391" ["question_id"]=> string(4) "3349" ["option_id"]=> string(5) "13283" } } } [124]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "243" ["ques_text"]=> string(237) "

If a given mass of gas occupies a volume of 10 cc at 1 atmospheric pressure and temperature of 100°C (373.15 K). What will be its volume at 4 atmospheric pressure; the temperature being the same

" ["question_id"]=> string(4) "3350" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13285" ["question_id"]=> string(4) "3350" ["opt_desc"]=> string(27) "

100 cc

" } [1]=> array(3) { ["option_id"]=> string(5) "13286" ["question_id"]=> string(4) "3350" ["opt_desc"]=> string(27) "

400 cc

" } [2]=> array(3) { ["option_id"]=> string(5) "13287" ["question_id"]=> string(4) "3350" ["opt_desc"]=> string(27) "

2.5 cc

" } [3]=> array(3) { ["option_id"]=> string(5) "13288" ["question_id"]=> string(4) "3350" ["opt_desc"]=> string(27) "

104 cc

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3392" ["question_id"]=> string(4) "3350" ["option_id"]=> string(5) "13287" } } } [125]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "243" ["ques_text"]=> string(141) "

The kinetic energy of one gram mole of a gas at normal temperature and pressure is (R = 8.31 J/mole-K)

" ["question_id"]=> string(4) "3351" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13289" ["question_id"]=> string(4) "3351" ["opt_desc"]=> string(35) "

0.56 x 104 J

" } [1]=> array(3) { ["option_id"]=> string(5) "13290" ["question_id"]=> string(4) "3351" ["opt_desc"]=> string(34) "

1.3 x 102 J

" } [2]=> array(3) { ["option_id"]=> string(5) "13291" ["question_id"]=> string(4) "3351" ["opt_desc"]=> string(34) "

2.7 x 102 J

" } [3]=> array(3) { ["option_id"]=> string(5) "13292" ["question_id"]=> string(4) "3351" ["opt_desc"]=> string(34) "

3.4 x 103 J

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3393" ["question_id"]=> string(4) "3351" ["option_id"]=> string(5) "13292" } } } [126]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "243" ["ques_text"]=> string(340) "

The molecules of a given mass of a gas have a rms velocity of 200 m/sec at 27°C and 1.0 x 105 N/m2 pressure. When the temperature is 127°C and pressure is 0.5 x 105 N/m2, the rms velocity in m/sec will be

" ["question_id"]=> string(4) "3354" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13301" ["question_id"]=> string(4) "3354" ["opt_desc"]=> string(125) "

1002/3

" } [1]=> array(3) { ["option_id"]=> string(5) "13302" ["question_id"]=> string(4) "3354" ["opt_desc"]=> string(105) "

1002

" } [2]=> array(3) { ["option_id"]=> string(5) "13303" ["question_id"]=> string(4) "3354" ["opt_desc"]=> string(115) "

400/2

" } [3]=> array(3) { ["option_id"]=> string(5) "13304" ["question_id"]=> string(4) "3354" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3396" ["question_id"]=> string(4) "3354" ["option_id"]=> string(5) "13303" } } } [127]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "243" ["ques_text"]=> string(196) "

Gas at a pressure P0 in contained as a vessel. If the masses of all the molecules are halved and their speeds are doubled, the resulting pressure P will be equal to

" ["question_id"]=> string(4) "3355" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13305" ["question_id"]=> string(4) "3355" ["opt_desc"]=> string(27) "

4 P0

" } [1]=> array(3) { ["option_id"]=> string(5) "13306" ["question_id"]=> string(4) "3355" ["opt_desc"]=> string(27) "

2 P0

" } [2]=> array(3) { ["option_id"]=> string(5) "13307" ["question_id"]=> string(4) "3355" ["opt_desc"]=> string(25) "

P0

" } [3]=> array(3) { ["option_id"]=> string(5) "13308" ["question_id"]=> string(4) "3355" ["opt_desc"]=> string(27) "

P0/2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3397" ["question_id"]=> string(4) "3355" ["option_id"]=> string(5) "13306" } } } [128]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "244" ["ques_text"]=> string(313) "

The pressure P, volume V and temperature T of a gas in the jar A and the other gas in the jar B at pressure 2P, volume V/4 and temperature 2T, then the ratio of the number of molecules in the jar A and B will be

" ["question_id"]=> string(4) "3361" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13329" ["question_id"]=> string(4) "3361" ["opt_desc"]=> string(17) "

1 : 1

" } [1]=> array(3) { ["option_id"]=> string(5) "13330" ["question_id"]=> string(4) "3361" ["opt_desc"]=> string(17) "

1 : 2

" } [2]=> array(3) { ["option_id"]=> string(5) "13331" ["question_id"]=> string(4) "3361" ["opt_desc"]=> string(17) "

2 : 1

" } [3]=> array(3) { ["option_id"]=> string(5) "13332" ["question_id"]=> string(4) "3361" ["opt_desc"]=> string(17) "

4 : 1

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3403" ["question_id"]=> string(4) "3361" ["option_id"]=> string(5) "13332" } } } [129]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "244" ["ques_text"]=> string(172) "

A gas at a certain volume and temperature has pressure 75 cm. If the mass of the gas is doubled at the same volume and temperature, its new pressure is

" ["question_id"]=> string(4) "3363" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13337" ["question_id"]=> string(4) "3363" ["opt_desc"]=> string(28) "

37.5 cm

" } [1]=> array(3) { ["option_id"]=> string(5) "13338" ["question_id"]=> string(4) "3363" ["opt_desc"]=> string(26) "

75 cm

" } [2]=> array(3) { ["option_id"]=> string(5) "13339" ["question_id"]=> string(4) "3363" ["opt_desc"]=> string(27) "

150 cm

" } [3]=> array(3) { ["option_id"]=> string(5) "13340" ["question_id"]=> string(4) "3363" ["opt_desc"]=> string(27) "

300 cm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3405" ["question_id"]=> string(4) "3363" ["option_id"]=> string(5) "13339" } } } [130]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "244" ["ques_text"]=> string(317) "

The root mean square speed of hydrogen molecules of an ideal hydrogen gas kept in a gas chamber at 0°C is 3180 m/s. The pressure on the hydrogen gas is

(Density of hydrogen gas is 8.99 x 10-2 kg/m3, 1 atmosphere=1.01 x 105 N/m2)

" ["question_id"]=> string(4) "3364" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13341" ["question_id"]=> string(4) "3364" ["opt_desc"]=> string(28) "

0.1 atm

" } [1]=> array(3) { ["option_id"]=> string(5) "13342" ["question_id"]=> string(4) "3364" ["opt_desc"]=> string(28) "

1.5 atm

" } [2]=> array(3) { ["option_id"]=> string(5) "13343" ["question_id"]=> string(4) "3364" ["opt_desc"]=> string(28) "

2.0 atm

" } [3]=> array(3) { ["option_id"]=> string(5) "13344" ["question_id"]=> string(4) "3364" ["opt_desc"]=> string(28) "

3.0 atm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3406" ["question_id"]=> string(4) "3364" ["option_id"]=> string(5) "13344" } } } [131]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "244" ["ques_text"]=> string(106) "

A gas, is heated at constant pressure. The fraction of heat supplied used for external work is

" ["question_id"]=> string(4) "3365" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13345" ["question_id"]=> string(4) "3365" ["opt_desc"]=> string(22) "

1/ γ

" } [1]=> array(3) { ["option_id"]=> string(5) "13346" ["question_id"]=> string(4) "3365" ["opt_desc"]=> string(25) "

(1-1/γ)

" } [2]=> array(3) { ["option_id"]=> string(5) "13347" ["question_id"]=> string(4) "3365" ["opt_desc"]=> string(21) "

γ-1

" } [3]=> array(3) { ["option_id"]=> string(5) "13348" ["question_id"]=> string(4) "3365" ["opt_desc"]=> string(37) "

(1-1/γ2)

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3407" ["question_id"]=> string(4) "3365" ["option_id"]=> string(5) "13346" } } } [132]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "244" ["ques_text"]=> string(120) "

Find the ratio of specific heat at constant pressure to the specific heat constant volume for NH3

" ["question_id"]=> string(4) "3367" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13353" ["question_id"]=> string(4) "3367" ["opt_desc"]=> string(16) "

1.33

" } [1]=> array(3) { ["option_id"]=> string(5) "13354" ["question_id"]=> string(4) "3367" ["opt_desc"]=> string(16) "

1.44

" } [2]=> array(3) { ["option_id"]=> string(5) "13355" ["question_id"]=> string(4) "3367" ["opt_desc"]=> string(16) "

1.28

" } [3]=> array(3) { ["option_id"]=> string(5) "13356" ["question_id"]=> string(4) "3367" ["opt_desc"]=> string(16) "

1.67

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3409" ["question_id"]=> string(4) "3367" ["option_id"]=> string(5) "13355" } } } [133]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "244" ["ques_text"]=> string(456) "

Two gases occupy two containers A and B the gas in A, of volume 0.10 m3, exerts a pressure of 1.40 MPa and that in B of volume 0.15 m3 exerts a pressure 0.7 MPa. The two containers are united by a tube of negligible volume and the gases are allowed to intermingle. Then it the temperature remains constant, the final pressure in the container will be (in MPa)

" ["question_id"]=> string(4) "3369" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13361" ["question_id"]=> string(4) "3369" ["opt_desc"]=> string(16) "

0.70

" } [1]=> array(3) { ["option_id"]=> string(5) "13362" ["question_id"]=> string(4) "3369" ["opt_desc"]=> string(16) "

0.98

" } [2]=> array(3) { ["option_id"]=> string(5) "13363" ["question_id"]=> string(4) "3369" ["opt_desc"]=> string(16) "

1.40

" } [3]=> array(3) { ["option_id"]=> string(5) "13364" ["question_id"]=> string(4) "3369" ["opt_desc"]=> string(16) "

2.10

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3411" ["question_id"]=> string(4) "3369" ["option_id"]=> string(5) "13362" } } } [134]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "245" ["ques_text"]=> string(126) "

On 0°C pressure measured by barometer is 760 mm. What will be pressure on 100°C

" ["question_id"]=> string(4) "3371" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13369" ["question_id"]=> string(4) "3371" ["opt_desc"]=> string(27) "

760 mm

" } [1]=> array(3) { ["option_id"]=> string(5) "13370" ["question_id"]=> string(4) "3371" ["opt_desc"]=> string(27) "

730 mm

" } [2]=> array(3) { ["option_id"]=> string(5) "13371" ["question_id"]=> string(4) "3371" ["opt_desc"]=> string(27) "

780 mm

" } [3]=> array(3) { ["option_id"]=> string(5) "13372" ["question_id"]=> string(4) "3371" ["opt_desc"]=> string(25) "

None of these

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3413" ["question_id"]=> string(4) "3371" ["option_id"]=> string(5) "13372" } } } [135]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "245" ["ques_text"]=> string(176) "

Hydrogen gas is filled in a balloon at 20°C. If temperature is made 40°C, pressure remaining same, what fraction of hydrogen will come out

" ["question_id"]=> string(4) "3372" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13373" ["question_id"]=> string(4) "3372" ["opt_desc"]=> string(16) "

0.07

" } [1]=> array(3) { ["option_id"]=> string(5) "13374" ["question_id"]=> string(4) "3372" ["opt_desc"]=> string(16) "

0.25

" } [2]=> array(3) { ["option_id"]=> string(5) "13375" ["question_id"]=> string(4) "3372" ["opt_desc"]=> string(15) "

0.5

" } [3]=> array(3) { ["option_id"]=> string(5) "13376" ["question_id"]=> string(4) "3372" ["opt_desc"]=> string(16) "

0.75

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3414" ["question_id"]=> string(4) "3372" ["option_id"]=> string(5) "13373" } } } [136]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "245" ["ques_text"]=> string(179) "

If the intermolecular forces vanish away, the volume occupied by the molecules contained in 4.5 kg water at standard temperature and pressure will be given by

" ["question_id"]=> string(4) "3376" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13389" ["question_id"]=> string(4) "3376" ["opt_desc"]=> string(29) "

5.6 m3

" } [1]=> array(3) { ["option_id"]=> string(5) "13390" ["question_id"]=> string(4) "3376" ["opt_desc"]=> string(29) "

4.5 m3

" } [2]=> array(3) { ["option_id"]=> string(5) "13391" ["question_id"]=> string(4) "3376" ["opt_desc"]=> string(22) "

11.2 litre

" } [3]=> array(3) { ["option_id"]=> string(5) "13392" ["question_id"]=> string(4) "3376" ["opt_desc"]=> string(30) "

11.2 m3

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3418" ["question_id"]=> string(4) "3376" ["option_id"]=> string(5) "13389" } } } [137]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "245" ["ques_text"]=> string(199) "

A gas at 27°C has a volume V and pressure P. On heating its pressure is doubled and volume becomes three times. The resulting temperature of the gas will be

" ["question_id"]=> string(4) "3377" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13393" ["question_id"]=> string(4) "3377" ["opt_desc"]=> string(31) "

1800°C

" } [1]=> array(3) { ["option_id"]=> string(5) "13394" ["question_id"]=> string(4) "3377" ["opt_desc"]=> string(30) "

162°C

" } [2]=> array(3) { ["option_id"]=> string(5) "13395" ["question_id"]=> string(4) "3377" ["opt_desc"]=> string(31) "

1527°C

" } [3]=> array(3) { ["option_id"]=> string(5) "13396" ["question_id"]=> string(4) "3377" ["opt_desc"]=> string(30) "

600°C

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3419" ["question_id"]=> string(4) "3377" ["option_id"]=> string(5) "13395" } } } [138]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "245" ["ques_text"]=> string(363) "

A flask contains 10-3 m3 gas. At a temperature, the number of molecules of oxygen are 3.0 x 1022. The mass of an oxygen molecule is 5.3 x 10-26 kg and at that temperature the rms velocity of molecules is 400 m/s. The pressure in N/m2 of the gas in the flask is

" ["question_id"]=> string(4) "3378" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13397" ["question_id"]=> string(4) "3378" ["opt_desc"]=> string(33) "

8.48 x 104

" } [1]=> array(3) { ["option_id"]=> string(5) "13398" ["question_id"]=> string(4) "3378" ["opt_desc"]=> string(33) "

2.87 x 104

" } [2]=> array(3) { ["option_id"]=> string(5) "13399" ["question_id"]=> string(4) "3378" ["opt_desc"]=> string(34) "

25.44 x 104

" } [3]=> array(3) { ["option_id"]=> string(5) "13400" ["question_id"]=> string(4) "3378" ["opt_desc"]=> string(34) "

12.72 x 104

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3420" ["question_id"]=> string(4) "3378" ["option_id"]=> string(5) "13397" } } } [139]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "245" ["ques_text"]=> string(230) "

A cylinder of capacity 20 litres is filled with H2 gas. The total average kinetic energy of translatory motion of its molecules is 1.5 x 105 J. The pressure of hydrogen in the cylinder is

" ["question_id"]=> string(4) "3379" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13401" ["question_id"]=> string(4) "3379" ["opt_desc"]=> string(46) "

2 x 106 N/m2

" } [1]=> array(3) { ["option_id"]=> string(5) "13402" ["question_id"]=> string(4) "3379" ["opt_desc"]=> string(46) "

3 x 106 N/m2

" } [2]=> array(3) { ["option_id"]=> string(5) "13403" ["question_id"]=> string(4) "3379" ["opt_desc"]=> string(46) "

4 x 106 N/m2

" } [3]=> array(3) { ["option_id"]=> string(5) "13404" ["question_id"]=> string(4) "3379" ["opt_desc"]=> string(46) "

5 x 106 N/m2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3421" ["question_id"]=> string(4) "3379" ["option_id"]=> string(5) "13404" } } } [140]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "245" ["ques_text"]=> string(173) "

The temperature of a gas is raised while its volume remains constant, the pressure exerted by a gas on the walls of the container increases because its molecules

" ["question_id"]=> string(4) "3380" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13405" ["question_id"]=> string(4) "3380" ["opt_desc"]=> string(48) "

Lose more kinetic energy to the wall

" } [1]=> array(3) { ["option_id"]=> string(5) "13406" ["question_id"]=> string(4) "3380" ["opt_desc"]=> string(59) "

Are in contact with the wall for a shorter time

" } [2]=> array(3) { ["option_id"]=> string(5) "13407" ["question_id"]=> string(4) "3380" ["opt_desc"]=> string(61) "

Strike the wall more often with higher velocities

" } [3]=> array(3) { ["option_id"]=> string(5) "13408" ["question_id"]=> string(4) "3380" ["opt_desc"]=> string(50) "

Collide with each other less frequency

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3422" ["question_id"]=> string(4) "3380" ["option_id"]=> string(5) "13407" } } } [141]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "245" ["ques_text"]=> string(333) "

40 calories of heat is needed to raise the temperature of 1 mole of an ideal monoatomic gas from 20°C to 30°C at a constant pressure. The amount of heat required to raise its temperature over the same interval at a constant volume (R=2caloriemole-1K-1) is

" ["question_id"]=> string(4) "3381" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13409" ["question_id"]=> string(4) "3381" ["opt_desc"]=> string(31) "

20 calorie

" } [1]=> array(3) { ["option_id"]=> string(5) "13410" ["question_id"]=> string(4) "3381" ["opt_desc"]=> string(31) "

40 calorie

" } [2]=> array(3) { ["option_id"]=> string(5) "13411" ["question_id"]=> string(4) "3381" ["opt_desc"]=> string(31) "

60 calorie

" } [3]=> array(3) { ["option_id"]=> string(5) "13412" ["question_id"]=> string(4) "3381" ["opt_desc"]=> string(31) "

80 calorie

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3423" ["question_id"]=> string(4) "3381" ["option_id"]=> string(5) "13409" } } } [142]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "245" ["ques_text"]=> string(257) "

The mean free path of nitrogen molecules at a pressure of 1.0 atm and temperature 0°C is 0.8 x 10-7m. If the number of density of molecules is 2.7 x 1025perm3, then the molecular diameter is

" ["question_id"]=> string(4) "3382" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13413" ["question_id"]=> string(4) "3382" ["opt_desc"]=> string(18) "

3.2 nm

" } [1]=> array(3) { ["option_id"]=> string(5) "13414" ["question_id"]=> string(4) "3382" ["opt_desc"]=> string(113) "

3.2Å

" } [2]=> array(3) { ["option_id"]=> string(5) "13415" ["question_id"]=> string(4) "3382" ["opt_desc"]=> string(24) "

3.2 µm

" } [3]=> array(3) { ["option_id"]=> string(5) "13416" ["question_id"]=> string(4) "3382" ["opt_desc"]=> string(17) "

2.3mm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3424" ["question_id"]=> string(4) "3382" ["option_id"]=> string(5) "13414" } } } [143]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "245" ["ques_text"]=> string(3108) "

The adjoining figure shows graph of pressure and volume of a gas at two temperatures T1 and T2. Which of the following interferences is correct

" ["question_id"]=> string(4) "3384" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13421" ["question_id"]=> string(4) "3384" ["opt_desc"]=> string(42) "

T1>T2

" } [1]=> array(3) { ["option_id"]=> string(5) "13422" ["question_id"]=> string(4) "3384" ["opt_desc"]=> string(39) "

T1=T2

" } [2]=> array(3) { ["option_id"]=> string(5) "13423" ["question_id"]=> string(4) "3384" ["opt_desc"]=> string(42) "

T1<T2

" } [3]=> array(3) { ["option_id"]=> string(5) "13424" ["question_id"]=> string(4) "3384" ["opt_desc"]=> string(40) "

No interference can be drawn

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3426" ["question_id"]=> string(4) "3384" ["option_id"]=> string(5) "13423" } } } [144]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "246" ["ques_text"]=> string(297) "

The value of Cp-Cv=1.00 R  for a gas in state A and Cp-Cv=1.06 R  in another state. If PA and PB denote the pressure and TA and TB denote the temperatures in the two states, then

" ["question_id"]=> string(4) "3387" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13433" ["question_id"]=> string(4) "3387" ["opt_desc"]=> string(71) "

PA=PB, TA>TB

" } [1]=> array(3) { ["option_id"]=> string(5) "13434" ["question_id"]=> string(4) "3387" ["opt_desc"]=> string(71) "

PA>PB, TA=TB

" } [2]=> array(3) { ["option_id"]=> string(5) "13435" ["question_id"]=> string(4) "3387" ["opt_desc"]=> string(74) "

PA<PB, TA>TB

" } [3]=> array(3) { ["option_id"]=> string(5) "13436" ["question_id"]=> string(4) "3387" ["opt_desc"]=> string(74) "

PA>PB, TA<TB

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3429" ["question_id"]=> string(4) "3387" ["option_id"]=> string(5) "13435" } } } [145]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "246" ["ques_text"]=> string(188) "

A monoatomic gas expands at constant pressure on heating. The percentage of heat supplied that increases the internal energy of the gas and that is involved in the expansion is

" ["question_id"]=> string(4) "3388" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13437" ["question_id"]=> string(4) "3388" ["opt_desc"]=> string(20) "

75%, 25%

" } [1]=> array(3) { ["option_id"]=> string(5) "13438" ["question_id"]=> string(4) "3388" ["opt_desc"]=> string(20) "

25%, 75%

" } [2]=> array(3) { ["option_id"]=> string(5) "13439" ["question_id"]=> string(4) "3388" ["opt_desc"]=> string(20) "

60%, 40%

" } [3]=> array(3) { ["option_id"]=> string(5) "13440" ["question_id"]=> string(4) "3388" ["opt_desc"]=> string(20) "

40%, 60%

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3430" ["question_id"]=> string(4) "3388" ["option_id"]=> string(5) "13439" } } } [146]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "246" ["ques_text"]=> string(161) "

When an ideal diatomic gas is heated at constant pressure, the fraction of the heat energy supplied which increases the internal energy of the gas is

" ["question_id"]=> string(4) "3389" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13441" ["question_id"]=> string(4) "3389" ["opt_desc"]=> string(15) "

2/5

" } [1]=> array(3) { ["option_id"]=> string(5) "13442" ["question_id"]=> string(4) "3389" ["opt_desc"]=> string(15) "

3/5

" } [2]=> array(3) { ["option_id"]=> string(5) "13443" ["question_id"]=> string(4) "3389" ["opt_desc"]=> string(15) "

3/7

" } [3]=> array(3) { ["option_id"]=> string(5) "13444" ["question_id"]=> string(4) "3389" ["opt_desc"]=> string(15) "

5/7

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3431" ["question_id"]=> string(4) "3389" ["option_id"]=> string(5) "13444" } } } [147]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "246" ["ques_text"]=> string(224) "

At standard temperature and pressure the density of a gas is 1.3 gm/ m3 and the speed of the sound in gas is 330 m/sec. Then the degree of freedom of the gas will be

" ["question_id"]=> string(4) "3390" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13445" ["question_id"]=> string(4) "3390" ["opt_desc"]=> string(13) "

3

" } [1]=> array(3) { ["option_id"]=> string(5) "13446" ["question_id"]=> string(4) "3390" ["opt_desc"]=> string(13) "

4

" } [2]=> array(3) { ["option_id"]=> string(5) "13447" ["question_id"]=> string(4) "3390" ["opt_desc"]=> string(13) "

5

" } [3]=> array(3) { ["option_id"]=> string(5) "13448" ["question_id"]=> string(4) "3390" ["opt_desc"]=> string(13) "

6

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3432" ["question_id"]=> string(4) "3390" ["option_id"]=> string(5) "13447" } } } [148]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "246" ["ques_text"]=> string(225) "

Energy of all molecules of a monoatomic gas having a volume V and pressure P is 3/2PV. The total translational kinetic energy of all molecules of a diatomic gas as the same volume and pressure is

" ["question_id"]=> string(4) "3391" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13449" ["question_id"]=> string(4) "3391" ["opt_desc"]=> string(17) "

1/2PV

" } [1]=> array(3) { ["option_id"]=> string(5) "13450" ["question_id"]=> string(4) "3391" ["opt_desc"]=> string(17) "

3/2PV

" } [2]=> array(3) { ["option_id"]=> string(5) "13451" ["question_id"]=> string(4) "3391" ["opt_desc"]=> string(17) "

5/2PV

" } [3]=> array(3) { ["option_id"]=> string(5) "13452" ["question_id"]=> string(4) "3391" ["opt_desc"]=> string(25) "

3 PV

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3433" ["question_id"]=> string(4) "3391" ["option_id"]=> string(5) "13450" } } } [149]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "246" ["ques_text"]=> string(269) "

A closed vessel contains 8g of oxygen and 7g of nitrogen. The total pressure is 10 atm at a given temperature. If now oxygen is absorbed by introducing a suitable absorbent the pressure of the remaining gas in atm will be

" ["question_id"]=> string(4) "3392" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13453" ["question_id"]=> string(4) "3392" ["opt_desc"]=> string(13) "

2

" } [1]=> array(3) { ["option_id"]=> string(5) "13454" ["question_id"]=> string(4) "3392" ["opt_desc"]=> string(14) "

10

" } [2]=> array(3) { ["option_id"]=> string(5) "13455" ["question_id"]=> string(4) "3392" ["opt_desc"]=> string(13) "

4

" } [3]=> array(3) { ["option_id"]=> string(5) "13456" ["question_id"]=> string(4) "3392" ["opt_desc"]=> string(13) "

5

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3434" ["question_id"]=> string(4) "3392" ["option_id"]=> string(5) "13456" } } } [150]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "246" ["ques_text"]=> string(318) "

The capacity of a vessel is 3 litres. It contains 6 gm oxygen, 8 gm nitrogen and 5 gm CO2 mixture at 27°C. If R = 8.31 J/mole ´ kelvin, then the pressure in the vessel in N/m2 will be (approx.)

" ["question_id"]=> string(4) "3393" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13457" ["question_id"]=> string(4) "3393" ["opt_desc"]=> string(30) "

5 x 105

" } [1]=> array(3) { ["option_id"]=> string(5) "13458" ["question_id"]=> string(4) "3393" ["opt_desc"]=> string(30) "

5 x 104

" } [2]=> array(3) { ["option_id"]=> string(5) "13459" ["question_id"]=> string(4) "3393" ["opt_desc"]=> string(26) "

106

" } [3]=> array(3) { ["option_id"]=> string(5) "13460" ["question_id"]=> string(4) "3393" ["opt_desc"]=> string(26) "

105

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3435" ["question_id"]=> string(4) "3393" ["option_id"]=> string(5) "13457" } } } [151]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "246" ["ques_text"]=> string(2741) "

Pressure versus temperature graph of an ideal gas of equal number of moles of different volumes are plotted as shown in figure. Choose the correct alternative

" ["question_id"]=> string(4) "3394" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13461" ["question_id"]=> string(4) "3394" ["opt_desc"]=> string(103) "

V1=V2, V3=V4 and V2>V3

" } [1]=> array(3) { ["option_id"]=> string(5) "13462" ["question_id"]=> string(4) "3394" ["opt_desc"]=> string(103) "

V1=V2, V3=V4 and V2<V3

" } [2]=> array(3) { ["option_id"]=> string(5) "13463" ["question_id"]=> string(4) "3394" ["opt_desc"]=> string(68) "

V1=V2= V3=V4

" } [3]=> array(3) { ["option_id"]=> string(5) "13464" ["question_id"]=> string(4) "3394" ["opt_desc"]=> string(76) "

V4>V3>V2>V1

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3436" ["question_id"]=> string(4) "3394" ["option_id"]=> string(5) "13461" } } } [152]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "246" ["ques_text"]=> string(1769) "

The expansion of unit mass of a perfect gas at constant pressure is shown in the diagram. Here

" ["question_id"]=> string(4) "3395" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13465" ["question_id"]=> string(4) "3395" ["opt_desc"]=> string(73) "

a = volume, b = °C temperature

" } [1]=> array(3) { ["option_id"]=> string(5) "13466" ["question_id"]=> string(4) "3395" ["opt_desc"]=> string(68) "

a = volume, b = K temperature

" } [2]=> array(3) { ["option_id"]=> string(5) "13467" ["question_id"]=> string(4) "3395" ["opt_desc"]=> string(73) "

a = °C temperature, b = volume

" } [3]=> array(3) { ["option_id"]=> string(5) "13468" ["question_id"]=> string(4) "3395" ["opt_desc"]=> string(68) "

a = K temperature, b = volume

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3437" ["question_id"]=> string(4) "3395" ["option_id"]=> string(5) "13467" } } } [153]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "246" ["ques_text"]=> string(320) "

An air bubble of volume v0 is released by a fish at a depth h in a lake. The bubble rises to the surface. Assume constant temperature and standard atmospheric pressure P above the lake. The volume of the bubble just before touching the surface will be (density of water is ρ)

" ["question_id"]=> string(4) "3396" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13469" ["question_id"]=> string(4) "3396" ["opt_desc"]=> string(25) "

v0

" } [1]=> array(3) { ["option_id"]=> string(5) "13470" ["question_id"]=> string(4) "3396" ["opt_desc"]=> string(36) "

v0(ρgh/P)

" } [2]=> array(3) { ["option_id"]=> string(5) "13471" ["question_id"]=> string(4) "3396" ["opt_desc"]=> string(40) "

V0/(1+ ρgh/P)

" } [3]=> array(3) { ["option_id"]=> string(5) "13472" ["question_id"]=> string(4) "3396" ["opt_desc"]=> string(39) "

V0(1+ ρgh/p)

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3438" ["question_id"]=> string(4) "3396" ["option_id"]=> string(5) "13472" } } } [154]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "246" ["ques_text"]=> string(105) "

At constant temperature on increasing the pressure of a gas by 5% will decrease its volume by

" ["question_id"]=> string(4) "3397" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13473" ["question_id"]=> string(4) "3397" ["opt_desc"]=> string(14) "

5%

" } [1]=> array(3) { ["option_id"]=> string(5) "13474" ["question_id"]=> string(4) "3397" ["opt_desc"]=> string(17) "

5.26%

" } [2]=> array(3) { ["option_id"]=> string(5) "13475" ["question_id"]=> string(4) "3397" ["opt_desc"]=> string(17) "

4.26%

" } [3]=> array(3) { ["option_id"]=> string(5) "13476" ["question_id"]=> string(4) "3397" ["opt_desc"]=> string(17) "

4.76%

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3439" ["question_id"]=> string(4) "3397" ["option_id"]=> string(5) "13476" } } } [155]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "246" ["ques_text"]=> string(302) "

A box containing N molecules of a perfect gas at temperature T1 and pressure P1. The number of molecules in the box is doubled keeping the total kinetic energy of the gas same as before. If the new pressure is P2 and temperature T2, then

" ["question_id"]=> string(4) "3399" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13481" ["question_id"]=> string(4) "3399" ["opt_desc"]=> string(68) "

P2=P1, T2=T1

" } [1]=> array(3) { ["option_id"]=> string(5) "13482" ["question_id"]=> string(4) "3399" ["opt_desc"]=> string(70) "

P2=P1, T2=T1/2

" } [2]=> array(3) { ["option_id"]=> string(5) "13483" ["question_id"]=> string(4) "3399" ["opt_desc"]=> string(69) "

P2=2P1, T2=T1

" } [3]=> array(3) { ["option_id"]=> string(5) "13484" ["question_id"]=> string(4) "3399" ["opt_desc"]=> string(71) "

P2=2P1, T2=T1/2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3441" ["question_id"]=> string(4) "3399" ["option_id"]=> string(5) "13482" } } } [156]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "247" ["ques_text"]=> string(429) "

Two identical containers each of volume V0 are joined by a small pipe. The containers contain identical gases at temperature T0 and pressure P0. One container is heated to temperature 2T0 while maintaining the other at the same temperature. The common pressure of the gas is P and n is the number of moles of gas in container at temperature 2T0

" ["question_id"]=> string(4) "3403" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13497" ["question_id"]=> string(4) "3403" ["opt_desc"]=> string(28) "

P=2P0

" } [1]=> array(3) { ["option_id"]=> string(5) "13498" ["question_id"]=> string(4) "3403" ["opt_desc"]=> string(30) "

P=4/3P0

" } [2]=> array(3) { ["option_id"]=> string(5) "13499" ["question_id"]=> string(4) "3403" ["opt_desc"]=> string(59) "

n=2/3.P0V0/RT0

" } [3]=> array(3) { ["option_id"]=> string(5) "13500" ["question_id"]=> string(4) "3403" ["opt_desc"]=> string(59) "

n=3/2.P0V0/RT0

" } } ["Answer"]=> array(2) { [0]=> array(3) { ["answer_id"]=> string(4) "3445" ["question_id"]=> string(4) "3403" ["option_id"]=> string(5) "13498" } [1]=> array(3) { ["answer_id"]=> string(4) "3446" ["question_id"]=> string(4) "3403" ["option_id"]=> string(5) "13499" } } } [157]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "247" ["ques_text"]=> string(328) "

Two containers of equal volume contain the same gas at pressures P1 and P2 and absolute temperatures T1 and T2 respectively. On joining the vessels, the gas reaches a common pressure P and common temperature T. The ratio P/T is equal to

" ["question_id"]=> string(4) "3404" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13501" ["question_id"]=> string(4) "3404" ["opt_desc"]=> string(67) "

P1/T1+P2/T2

" } [1]=> array(3) { ["option_id"]=> string(5) "13502" ["question_id"]=> string(4) "3404" ["opt_desc"]=> string(107) "

P1T1+P2T2/(T1+T2)2

" } [2]=> array(3) { ["option_id"]=> string(5) "13503" ["question_id"]=> string(4) "3404" ["opt_desc"]=> string(107) "

P1T2+P2T1/(T1+T2)2

" } [3]=> array(3) { ["option_id"]=> string(5) "13504" ["question_id"]=> string(4) "3404" ["opt_desc"]=> string(69) "

P1/2T1+P2/2T2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3447" ["question_id"]=> string(4) "3404" ["option_id"]=> string(5) "13504" } } } [158]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "247" ["ques_text"]=> string(4822) "

The expansion of an ideal gas of mass m at a constant pressure P is given by the straight line D. Then the expansion of the same ideal gas of mass 2m at a pressure P/ 2 is given by the straight line

" ["question_id"]=> string(4) "3406" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13509" ["question_id"]=> string(4) "3406" ["opt_desc"]=> string(13) "

E

" } [1]=> array(3) { ["option_id"]=> string(5) "13510" ["question_id"]=> string(4) "3406" ["opt_desc"]=> string(13) "

C

" } [2]=> array(3) { ["option_id"]=> string(5) "13511" ["question_id"]=> string(4) "3406" ["opt_desc"]=> string(13) "

B

" } [3]=> array(3) { ["option_id"]=> string(5) "13512" ["question_id"]=> string(4) "3406" ["opt_desc"]=> string(13) "

A

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3450" ["question_id"]=> string(4) "3406" ["option_id"]=> string(5) "13512" } } } [159]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "247" ["ques_text"]=> string(294) "

A flask is filled with 13 gm of an ideal gas at 27°C and its temperature is raised to 52°C. The mass of the gas that has to be released to maintain the temperature of the gas in the flask at 52°C and the pressure remaining the same is

" ["question_id"]=> string(4) "3407" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13513" ["question_id"]=> string(4) "3407" ["opt_desc"]=> string(26) "

2.5 g

" } [1]=> array(3) { ["option_id"]=> string(5) "13514" ["question_id"]=> string(4) "3407" ["opt_desc"]=> string(26) "

2.0 g

" } [2]=> array(3) { ["option_id"]=> string(5) "13515" ["question_id"]=> string(4) "3407" ["opt_desc"]=> string(26) "

1.5 g

" } [3]=> array(3) { ["option_id"]=> string(5) "13516" ["question_id"]=> string(4) "3407" ["opt_desc"]=> string(26) "

1.0 g

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3451" ["question_id"]=> string(4) "3407" ["option_id"]=> string(5) "13516" } } } [160]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "247" ["ques_text"]=> string(147) "

If pressure of a gas contained in a closed vessel is increased by 0.4% when heated by 1°C, the initial temperature must be

" ["question_id"]=> string(4) "3413" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13537" ["question_id"]=> string(4) "3413" ["opt_desc"]=> string(26) "

250 K

" } [1]=> array(3) { ["option_id"]=> string(5) "13538" ["question_id"]=> string(4) "3413" ["opt_desc"]=> string(30) "

250°C

" } [2]=> array(3) { ["option_id"]=> string(5) "13539" ["question_id"]=> string(4) "3413" ["opt_desc"]=> string(27) "

2500 K

" } [3]=> array(3) { ["option_id"]=> string(5) "13540" ["question_id"]=> string(4) "3413" ["opt_desc"]=> string(29) "

25°C

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3457" ["question_id"]=> string(4) "3413" ["option_id"]=> string(5) "13537" } } } [161]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "247" ["ques_text"]=> string(277) "

An ideal gas is initially at a temperature T and volume V. Its volume is increased by DV due to an increase in temperature DT, pressure remaining constant. The quantity δ= ΔV/VΔT  varies with temperature as

" ["question_id"]=> string(4) "3414" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13541" ["question_id"]=> string(4) "3414" ["opt_desc"]=> string(1195) "

" } [1]=> array(3) { ["option_id"]=> string(5) "13542" ["question_id"]=> string(4) "3414" ["opt_desc"]=> string(1571) "

" } [2]=> array(3) { ["option_id"]=> string(5) "13543" ["question_id"]=> string(4) "3414" ["opt_desc"]=> string(1759) "

" } [3]=> array(3) { ["option_id"]=> string(5) "13544" ["question_id"]=> string(4) "3414" ["opt_desc"]=> string(1847) "

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3458" ["question_id"]=> string(4) "3414" ["option_id"]=> string(5) "13543" } } } [162]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "248" ["ques_text"]=> string(3252) "

An experiment is carried on a fixed amount of gas at different temperatures and at high pressure such that it deviates from the ideal gas behaviour. The variation of PV/RT with P is shown in the diagram. The correct variation will correspond to

" ["question_id"]=> string(4) "3419" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13561" ["question_id"]=> string(4) "3419" ["opt_desc"]=> string(28) "

Curve A

" } [1]=> array(3) { ["option_id"]=> string(5) "13562" ["question_id"]=> string(4) "3419" ["opt_desc"]=> string(28) "

Curve B

" } [2]=> array(3) { ["option_id"]=> string(5) "13563" ["question_id"]=> string(4) "3419" ["opt_desc"]=> string(28) "

Curve C

" } [3]=> array(3) { ["option_id"]=> string(5) "13564" ["question_id"]=> string(4) "3419" ["opt_desc"]=> string(28) "

Curve D

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3463" ["question_id"]=> string(4) "3419" ["option_id"]=> string(5) "13562" } } } [163]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "248" ["ques_text"]=> string(5477) "

An ideal monoatomic gas is confined in a cylinder by a spring-loaded piston if cross-section 8 x 10-3m2. Initially the gas is at 300K and occupies a volume of 2.4 x 10-3m3 and the spring is in a relaxed state. The gas is heated by a small heater coil H. The force constant of the spring is 8000 N/m, and the atmospheric pressure is 1.0 x 105Pa. The cylinder and piston are thermally insulated. The piston and the spring are massless and there is no friction between the piston and cylinder. There is no heat loss through heater coil wire leads and thermal capacity of the heater coil is negligible. With all the above assumptions, if the gas is heated by the heater until the piston moves out slowly by 0.1m, then the final temperature is

" ["question_id"]=> string(4) "3420" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13565" ["question_id"]=> string(4) "3420" ["opt_desc"]=> string(26) "

400 K

" } [1]=> array(3) { ["option_id"]=> string(5) "13566" ["question_id"]=> string(4) "3420" ["opt_desc"]=> string(26) "

800 K

" } [2]=> array(3) { ["option_id"]=> string(5) "13567" ["question_id"]=> string(4) "3420" ["opt_desc"]=> string(27) "

1200 K

" } [3]=> array(3) { ["option_id"]=> string(5) "13568" ["question_id"]=> string(4) "3420" ["opt_desc"]=> string(26) "

300 K

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3464" ["question_id"]=> string(4) "3420" ["option_id"]=> string(5) "13566" } } } [164]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "248" ["ques_text"]=> string(7931) "

Two identical glass bulbs are interconnected by a thin glass tube. A gas is filled in these bulbs at N.T.P. If one bulb is placed in ice and another bulb is placed in hot bath, then the pressure of the gas becomes 1.5 times. The temperature of hot bath will be

" ["question_id"]=> string(4) "3422" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13573" ["question_id"]=> string(4) "3422" ["opt_desc"]=> string(30) "

100°C

" } [1]=> array(3) { ["option_id"]=> string(5) "13574" ["question_id"]=> string(4) "3422" ["opt_desc"]=> string(30) "

182°C

" } [2]=> array(3) { ["option_id"]=> string(5) "13575" ["question_id"]=> string(4) "3422" ["opt_desc"]=> string(30) "

256°C

" } [3]=> array(3) { ["option_id"]=> string(5) "13576" ["question_id"]=> string(4) "3422" ["opt_desc"]=> string(30) "

546°C

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3466" ["question_id"]=> string(4) "3422" ["option_id"]=> string(5) "13576" } } } [165]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "249" ["ques_text"]=> string(233) "

A cylinder contained 10 kg of gas at pressure 107 N/m2. The quantity of gas taken out of cylinder if final pressure is 2.5 x 106 N/m is (assume the temperature of gas is constant)

" ["question_id"]=> string(4) "3425" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13585" ["question_id"]=> string(4) "3425" ["opt_desc"]=> string(16) "

Zero

" } [1]=> array(3) { ["option_id"]=> string(5) "13586" ["question_id"]=> string(4) "3425" ["opt_desc"]=> string(27) "

7.5 kg

" } [2]=> array(3) { ["option_id"]=> string(5) "13587" ["question_id"]=> string(4) "3425" ["opt_desc"]=> string(27) "

2.5 kg

" } [3]=> array(3) { ["option_id"]=> string(5) "13588" ["question_id"]=> string(4) "3425" ["opt_desc"]=> string(25) "

5 kg

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3469" ["question_id"]=> string(4) "3425" ["option_id"]=> string(5) "13586" } } } [166]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "249" ["ques_text"]=> string(207) "

A balloon contains 500 m3 of helium at 27°C and 1 atmosphere pressure. The volume of the helium at – 3°C temperature and 0.5 atmosphere pressure will be

" ["question_id"]=> string(4) "3430" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13605" ["question_id"]=> string(4) "3430" ["opt_desc"]=> string(29) "

500 m3

" } [1]=> array(3) { ["option_id"]=> string(5) "13606" ["question_id"]=> string(4) "3430" ["opt_desc"]=> string(29) "

700 m3

" } [2]=> array(3) { ["option_id"]=> string(5) "13607" ["question_id"]=> string(4) "3430" ["opt_desc"]=> string(29) "

900 m3

" } [3]=> array(3) { ["option_id"]=> string(5) "13608" ["question_id"]=> string(4) "3430" ["opt_desc"]=> string(30) "

1000 m3

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3474" ["question_id"]=> string(4) "3430" ["option_id"]=> string(5) "13607" } } } [167]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "249" ["ques_text"]=> string(140) "

When volume of system is increased two times and temperature is decreased half of its initial temperature, then pressure becomes

" ["question_id"]=> string(4) "3431" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "13609" ["question_id"]=> string(4) "3431" ["opt_desc"]=> string(19) "

2 times

" } [1]=> array(3) { ["option_id"]=> string(5) "13610" ["question_id"]=> string(4) "3431" ["opt_desc"]=> string(19) "

4 times

" } [2]=> array(3) { ["option_id"]=> string(5) "13611" ["question_id"]=> string(4) "3431" ["opt_desc"]=> string(23) "

1 / 4 times

" } [3]=> array(3) { ["option_id"]=> string(5) "13612" ["question_id"]=> string(4) "3431" ["opt_desc"]=> string(23) "

1 / 2 times

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3475" ["question_id"]=> string(4) "3431" ["option_id"]=> string(5) "13611" } } } [168]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "283" ["ques_text"]=> string(74) "

Cathode rays are produced when the pressure is of the order of

" ["question_id"]=> string(4) "3883" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "15414" ["question_id"]=> string(4) "3883" ["opt_desc"]=> string(40) "

2 cm of Hg

" } [1]=> array(3) { ["option_id"]=> string(5) "15415" ["question_id"]=> string(4) "3883" ["opt_desc"]=> string(42) "

0.1 cm of Hg

" } [2]=> array(3) { ["option_id"]=> string(5) "15416" ["question_id"]=> string(4) "3883" ["opt_desc"]=> string(43) "

0.01 mm of Hg

" } [3]=> array(3) { ["option_id"]=> string(5) "15417" ["question_id"]=> string(4) "3883" ["opt_desc"]=> string(123) "

1μm of Hg

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "3932" ["question_id"]=> string(4) "3883" ["option_id"]=> string(5) "15416" } } } [169]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "298" ["ques_text"]=> string(140) "

Excess pressure of one soap bubble is four times more than the other. Then the ratio of volume of first bubble to another one is

" ["question_id"]=> string(4) "4178" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "16594" ["question_id"]=> string(4) "4178" ["opt_desc"]=> string(18) "

1 : 64

" } [1]=> array(3) { ["option_id"]=> string(5) "16595" ["question_id"]=> string(4) "4178" ["opt_desc"]=> string(15) "

1:4

" } [2]=> array(3) { ["option_id"]=> string(5) "16596" ["question_id"]=> string(4) "4178" ["opt_desc"]=> string(16) "

64:1

" } [3]=> array(3) { ["option_id"]=> string(5) "16597" ["question_id"]=> string(4) "4178" ["opt_desc"]=> string(15) "

1:2

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "4227" ["question_id"]=> string(4) "4178" ["option_id"]=> string(5) "16594" } } } [170]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "299" ["ques_text"]=> string(172) "

The pressure of air in a soap bubble of 0.7cm diameter is 8mm of water above the pressure outside. The surface tension of the soap solution is

" ["question_id"]=> string(4) "4193" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "16654" ["question_id"]=> string(4) "4193" ["opt_desc"]=> string(41) "

100 dyne/cm

" } [1]=> array(3) { ["option_id"]=> string(5) "16655" ["question_id"]=> string(4) "4193" ["opt_desc"]=> string(43) "

68.66 dyne/cm

" } [2]=> array(3) { ["option_id"]=> string(5) "16656" ["question_id"]=> string(4) "4193" ["opt_desc"]=> string(41) "

137 dyne/cm

" } [3]=> array(3) { ["option_id"]=> string(5) "16657" ["question_id"]=> string(4) "4193" ["opt_desc"]=> string(41) "

150 dyne/cm

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "4242" ["question_id"]=> string(4) "4193" ["option_id"]=> string(5) "16655" } } } [171]=> array(3) { ["Question"]=> array(3) { ["test_id"]=> string(3) "300" ["ques_text"]=> string(280) "

An air bubble of radius r in water is at a depth h below the water surface at some instant. If P is atmospheric pressure, d and T are density and surface tension of water respectively, the pressure inside the bubble will be

" ["question_id"]=> string(4) "4208" } ["Option"]=> array(4) { [0]=> array(3) { ["option_id"]=> string(5) "16714" ["question_id"]=> string(4) "4208" ["opt_desc"]=> string(214) "

P+hdg4Tr

" } [1]=> array(3) { ["option_id"]=> string(5) "16715" ["question_id"]=> string(4) "4208" ["opt_desc"]=> string(208) "

P+hdg+2Tr

" } [2]=> array(3) { ["option_id"]=> string(5) "16716" ["question_id"]=> string(4) "4208" ["opt_desc"]=> string(214) "

P+hdg2Tr

" } [3]=> array(3) { ["option_id"]=> string(5) "16717" ["question_id"]=> string(4) "4208" ["opt_desc"]=> string(208) "

P+hdg+4Tr

" } } ["Answer"]=> array(1) { [0]=> array(3) { ["answer_id"]=> string(4) "4257" ["question_id"]=> string(4) "4208" ["option_id"]=> string(5) "16715" } } } } pressure|Sureden:Your Education Partner
Vapour Pressure:- All the liquids have a tendency to form the vapours. These vapours exert pressure on the liquid surface. “The pressure exe
Pressure exerted by a Gas :- Let us consider one mole of a gas in a cubical container of side = l  gases particles collide with the wal
(1) Mass of gas is measured by determining the wt. of empty container and then container filled wet gas and then taking their difference which will give mass of gas.
Partial Pressure: Pressure exerted by individual gases in a mixture of gases is called partial pressure. Po2
Blood pressure: The pressure of blood against the walls of vessels due to the flow of blood in them is called blood pressure.
The normal force exerted by liquid at rest on a given surface in contact with it is called thrust of liquid on that surface. The normal force (or thrust) exerted by
Due to the property of surface tension a drop or bubble tries to contract and so compresses the matter enclosed. This in turn increases the internal pressure which prevents fu
Pressure Pressure is the force acting on a surface per u
Load More...
cover

Test Details

The pressure of 2 moles of ideal gas at 546 K having volume 44.8 L is

cover

Test Details

The pressure of a 1:4 mixture of dihydrogen and dioxygen enclosed in a vessel is one atmosphere. What would be the partial pressure of dioxygen? 

cover

Test Details

The volume of 2.8 g of carbon monoxide at 27° C and 0.821 atm pressure is

cover

Test Details

If P represents radiation pressure, C represents speed of light and Q represents radiation energy striking a unit area per second, then non-zero integers x, y and z such that P x Q y

cover

Test Details

The  pressure  of 107  dyne/cm2  is  equivalent  to

cover

Test Details

The relative lowering of vapour pressure is equal to the ratio between the number of 

cover

Test Details

A 25°C, the highest osmotic pressure is exhibited by 0.1 M solution of 

cover

Test Details

According to Raoult’s law, relative lowering of vapour pressure of a solution is equal to 

cover

Test Details

 Identify the correct statement for change of Gibb’s energy for a system (?Gsystem) at constant temperature and pressure. [2006]

cover

Test Details

The molecular weight of O2 and SO2 are 32 and 64 respectively. At 15°C and 150 mmHg pressure, 1 L of O2 contanis ‘N’ molecules. The number of molecules in 2 L of SO2 under the same conditions of temperature and pressure wil

cover

Test Details

Pressure remaining the same, the volume of a given mass of an ideal gas increases for every degree centigrade rise in temperature by definite fraction on its volume at

cover

Test Details

  At which one of the following temperature pressure conditions, the deviation of a gas from ideal behavior is expected to be minimum?

cover

Test Details

The S.I. unit of pressure is:

cover

Test Details

Two flasks A and B of equal volume contain 2 g of H2 and 2 g of N2 respectively at the same temperature and pressure. The number of molecules in flask A is:

cover

Test Details

Adrenalin hormone increases :                                            &

cover

Test Details

Osmotic pressure in the leaf cells is positive during                                         

cover

Test Details

The molecular weight of O2 and SO2 are 32 and 64 respectively. At 15 degree C and 150 mmHg pressure, 1 L of O2 contains ‘N’ molecules. The number of molecules in 2 L of SO2 under the same conditions of temperature and pressure will be&nbs

cover

Test Details

Adrenalin hormone increases :                                            &

cover

Test Details

The molecular weight of O2 and SO2 are 32 and 64 respectively. At 15°C and 150 mmHg pressure, 1 L of O2 contanis ‘N’ molecules. The number of molecules in 2 L of SO2 under the same conditions of temperature and pressure wil

cover

Test Details

Dimension of pressure are same as that of

cover

Test Details

 A gas occupies 300 ml at 27°C and 740 mm pressure. Calculate its volume at S.T.P?

cover

Test Details

Pressure remaining the same, the volume of a given mass of an ideal gas increases for every degree centigrade rise in temperature by definite fraction on its volume at

cover

Test Details

The density of a mixture of O2 and N2 at STP is 1.3 g/L. Calculate partial pressure of O2?

cover

Test Details

Two gases A and B having molecular weights 60 and 45 respectively are enclosed in a vessel. The weight of A is 0.5 g and that of B is 0.2 g. The total pressure of the mixture is 750 mm. Calculate the partial pressure of the two gases. (in mm of Hg)

cover

Test Details

O2 is collected over water at 20°C. The pressure inside shown by the gas is 740 mm of Hg. What is the pressure due to O2 alone if vapour pressure of H2O is 18 mm at 20°C?

cover

Test Details

Calculate the relative rates of diffusion of 235UF6 and 238UF6 in the gaseous state (At. Mass of F = 19) under the same condition of temperature and pressure?

cover

Test Details

A 25°C, the highest osmotic pressure is exhibited by 0.1 M solution of

cover

Test Details

According to Raoult’s law, relative lowering of vapour pressure of a solution is equal to

cover

Test Details

The relative lowering of vapour pressure is equal to the ratio between the number of

cover

Test Details

If 224 ml of a triatomic gas has a mass of 1 gm at 273 K and 1 atmospheric pressure then the mass of one atom is

cover

Test Details

The number of molecules in 8.96 litre of a gas at 0.C and 1 atm. Pressure is approximately

cover

Test Details

When burnt in air, 14.0 g mixture of carbon and sulphur gives a mixture of CO2 and SO2 in the volume ratio of 2:1, volume being measured at the same conditions of temperature and pressure moles of carbon in the mixture is

cover

Test Details

One mole of Q2 gas having a volume equal to 22.4 litres at 0°C and 1 atmospheric pressure in compressed isothermally so that its volume reduces to 11.2 litres. The work done in this process is [MP PET 1993; BVP 2003]

cover

Test Details

How much energy is absorbed by 10 kg molecule of an ideal gas if it expands from an initial pressure of 8 atm to 4 atm at a constant temperature of 27°C

cover

Test Details

During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio Cp/Cv for the gas is

cover

Test Details

If γ = 2.5 and volume is equal to 1/8 times to the initial volume then pressure P ¢ is equal to (initial pressure = P)

cover

Test Details

A thermally insulated container is divided into two parts by a screen. In one part the pressure and temperature are P and T for an ideal gas filled. In the second part it is vacuum. If now a small hole is created in the screen, then the temperature of the gas will  

cover

Test Details

Two samples A and B of a gas initially at the same pressure and temperature are compressed from volume V to V/2 (A isothermally and B adiabatically). The final pressure of A is        

cover

Test Details

A gas has pressure P and volume V. It is now compressed adiabatically to 1/32 times the original volume. If (32)1.4=128, the final pressure is

cover

Test Details

Molar specific heat of oxygen at constant pressure Cp=7.2 cal/mol/oC and R = 8.3 J/mol/K. At constant volume, 5 mol of oxygen is heated from 10°C to 20°C, the quantity of heat required is approximately

cover

Test Details

In pressure-volume diagram given below, the isochoric, isothermal, and isobaric parts respectively, are

cover

Test Details

When an ideal gas (g = 5/3) is heated under constant pressure, then what percentage of given heat energy will be utilised in doing external work

cover

Test Details

5 mole of hydrogen gas is heated from 30°C to 60°C at constant pressure. Heat given to the gas is (given R = 2 cal/mole degree)

cover

Test Details

A gas expands 0.25m3 at constant pressure 103 N/m2, the work done is [CPMT 1997; UPSEAT 1999; JIPMER 2001, 2002]

cover

Test Details

A gas is compressed at a constant pressure of 50N/m2  from a volume of 10 m3 to a volume of 4m3. Energy of 100 J is then added to the gas by heating. Its internal energy is            &nb

cover

Test Details

When an ideal diatomic gas is heated at constant pressure, the fraction of the heat energy supplied which increases the internal energy of the gas, is

cover

Test Details

 A thermodynamic process is shown in the figure. The pressures and volumes corresponding to some points in the figure are: PA=3 x 104Pa, PB=8 x104 Pa and VA= 2 x 10-3m3, VD=5 x 10-3m3

cover

Test Details

Carnot cycle (reversible) of a gas represented by a Pressure-Volume curve is shown in the diagram Consider the following statements I.          Area ABCD = Work done on the gas II.    &nb

cover

Test Details

An ideal gas expands in such a manner that its pressure and volume can be related by equation PV2= constant. During this process, the gas is

cover

Test Details

At 100°C the volume of 1kg of water is 10-3m3 and volume of 1 kg of steam at normal pressure is 1.67 m3. The latent heat of steam is 2.3 x 106 J/kg and the normal pressure is 105 N/m2. If 5 kg

cover

Test Details

1cm3 of water at its boiling point absorbs 540 calories of heat to become steam with a volume of 1671cm2. If the atmospheric pressure is 1.013 x 105 N/m2 and the mechanical equivalent of heat = 4.19 J/calorie, the energy sp

cover

Test Details

Consider the following statements Assertion (A): The internal energy of an ideal gas does not change during an isothermal process Reason (R) : The decrease in volume of a gas is compensa

cover

Test Details

In pressure-volume diagram given below, the isochoric, isothermal, and isobaric parts respectively, are

cover

Test Details

When an ideal gas (g = 5/3) is heated under constant pressure, then what percentage of given heat energy will be utilised in doing external work

cover

Test Details

5 mole of hydrogen gas is heated from 30°C to 60°C at constant pressure. Heat given to the gas is (given R = 2 cal/mole degree)

cover

Test Details

If γ = 2.5 and volume is equal to 1/8 times to the initial volume then pressure P ¢ is equal to (initial pressure = P)

cover

Test Details

A gas is compressed at a constant pressure of 50N/m2  from a volume of 10 m3 to a volume of 4m3. Energy of 100 J is then added to the gas by heating. Its internal energy is

cover

Test Details

A gas has pressure P and volume V. It is now compressed adiabatically to 1/32 times the original volume. If (32)1.4=128, the final pressure is

cover

Test Details

Molar specific heat of oxygen at constant pressure Cp=7.2 cal/mol/oC and R = 8.3 J/mol/K. At constant volume, 5 mol of oxygen is heated from 10°C to 20°C, the quantity of heat required is approximately

cover

Test Details

 At 100°C the volume of 1kg of water is 10-3m3 and volume of 1 kg of steam at normal pressure is 1.67 m3. The latent heat of steam is 2.3 x 106 J/kg and the normal pressure is 105 N/m2. If 5

cover

Test Details

1cm3 of water at its boiling point absorbs 540 calories of heat to become steam with a volume of 1671cm2. If the atmospheric pressure is 1.013 x 105 N/m2 and the mechanical equivalent of heat = 4.19 J/calorie, the energy sp

cover

Test Details

A gas expands 0.25m3 at constant pressure 103 N/m2, the work done is

cover

Test Details

During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio Cp/Cv for the gas is

cover

Test Details

Consider the following statements Assertion (A): The internal energy of an ideal gas does not change during an isothermal process Reason (R) : The decrease in volume of a gas is compensa

cover

Test Details

A thermodynamic process is shown in the figure. The pressures and volumes corresponding to some points in the figure are: PA=3 x 104Pa, PB=8 x104 Pa and VA= 2 x 10-3m3, VD=5 x 10-3m3

cover

Test Details

Two samples A and B of a gas initially at the same pressure and temperature are compressed from volume V to V/2 (A isothermally and B adiabatically). The final pressure of A is

cover

Test Details

An ideal gas expands in such a manner that its pressure and volume can be related by equation PV2= constant. During this process, the gas is

cover

Test Details

How much energy is absorbed by 10 kg molecule of an ideal gas if it expands from an initial pressure of 8 atm to 4 atm at a constant temperature of 27°C

cover

Test Details

Carnot cycle (reversible) of a gas represented by a Pressure-Volume curve is shown in the diagram

cover

Test Details

A thermally insulated container is divided into two parts by a screen. In one part the pressure and temperature are P and T for an ideal gas filled. In the second part it is vacuum. If now a small hole is created in the screen, then the temperature of the gas will

cover

Test Details

One mole of Q2 gas having a volume equal to 22.4 litres at 0°C and 1 atmospheric pressure in compressed isothermally so that its volume reduces to 11.2 litres. The work done in this process is

cover

Test Details

When an ideal diatomic gas is heated at constant pressure, the fraction of the heat energy supplied which increases the internal energy of the gas, is

cover

Test Details

A gas at 27°C has a volume V and pressure P. On heating its pressure is doubled and volume becomes three times. The resulting temperature of the gas will be

cover

Test Details

The kinetic energy of one gram mole of a gas at normal temperature and pressure is (R = 8.31 J/mole-K)

cover

Test Details

The average degrees of freedom per molecule for a gas is 6. The gas performs 25 J of work when it expands at constant pressure. The heat absorbed by gas is

cover

Test Details

A gas, is heated at constant pressure. The fraction of heat supplied used for external work is

cover

Test Details

If the mean free path of atoms is doubled then the pressure of gas will become

cover

Test Details

The temperature, pressure and volume of two gases X and Y are T, P and V respectively. When the gases are mixed then the volume and temperature of mixture become V and T respectively. The pressure and mass of the mixture will be

cover

Test Details

Two gases occupy two containers A and B the gas in A, of volume 0.10 m3, exerts a pressure of 1.40 MPa and that in B of volume 0.15 m3 exerts a pressure 0.7 MPa. The two containers are united by a tube of negligible vo

cover

Test Details

On 0°C pressure measured by barometer is 760 mm. What will be pressure on 100°C                                                

cover

Test Details

Hydrogen gas is filled in a balloon at 20°C. If temperature is made 40°C, pressure remaining same, what fraction of hydrogen will come out

cover

Test Details

If a given mass of gas occupies a volume of 10 cc at 1 atmospheric pressure and temperature of 100°C (373.15 K). What will be its volume at 4 atmospheric pressure; the temperature being the same

cover

Test Details

The molecules of a given mass of a gas have a rms velocity of 200 m/sec at 27°C and 1.0 x 105 N/m2 pressure. When the temperature is 127°C and pressure is 0.5 x 105 N/m2, the rms velocity

cover

Test Details

The pressure P, volume V and temperature T of a gas in the jar A and the other gas in the jar B at pressure 2P, volume V/4 and temperature 2T, then the ratio of the number of molecules in the jar A and B

cover

Test Details

A balloon contains 500 m3 of helium at 27°C and 1 atmosphere pressure. The volume of the helium at – 3°C temperature and 0.5 atmosphere pressure will be

cover

Test Details

A gas at a certain volume and temperature has pressure 75 cm. If the mass of the gas is doubled at the same volume and temperature, its new pressure is

cover

Test Details

A cylinder of capacity 20 litres is filled with H2 gas. The total average kinetic energy of translatory motion of its molecules is 1.5 x 105 J. The pressure of hydrogen in the cylinder is             &nb

cover

Test Details

The root mean square speed of hydrogen molecules of an ideal hydrogen gas kept in a gas chamber at 0°C is 3180 m/s. The pressure on the hydrogen gas is (Density of hydrogen gas is 8.99 x 10-2 kg/m3, 1 atmosphere=1.01 x 105 N/m2)

cover

Test Details

Find the ratio of specific heat at constant pressure to the specific heat constant volume for NH3                                              

cover

Test Details

A cylinder contained 10 kg of gas at pressure 107 N/m2. The quantity of gas taken out of cylinder if final pressure is 2.5 x 106 N/m is (assume the temperature of gas is constant)            &

cover

Test Details

Gas at a pressure P0 in contained as a vessel. If the masses of all the molecules are halved and their speeds are doubled, the resulting pressure P will be equal to

cover

Test Details

If the intermolecular forces vanish away, the volume occupied by the molecules contained in 4.5 kg water at standard temperature and pressure will be given by                     &

cover

Test Details

When volume of system is increased two times and temperature is decreased half of its initial temperature, then pressure becomes

cover

Test Details

A flask contains 10-3 m3 gas. At a temperature, the number of molecules of oxygen are 3.0 x 1022. The mass of an oxygen molecule is 5.3 x 10-26 kg and at that temperature the rms velocity of molecules is 400 m/s. T

cover

Test Details

The temperature of a gas is raised while its volume remains constant, the pressure exerted by a gas on the walls of the container increases because its molecules                      &

cover

Test Details

The adjoining figure shows graph of pressure and volume of a gas at two temperatures T1 and T2. Which of the following interferences is correct

cover

Test Details

A perfect gas at 27°C is heated at constant pressure to 327°C. If original volume of gas at 27°C is V then volume at 327°C is

cover

Test Details

A box containing N molecules of a perfect gas at temperature T1 and pressure P1. The number of molecules in the box is doubled keeping the total kinetic energy of the gas same as before. If the new pressure is P2 and temperature T2, then &nb

cover

Test Details

At constant temperature on increasing the pressure of a gas by 5% will decrease its volume by            [MP PET 2002]

cover

Test Details

An air bubble of volume v0 is released by a fish at a depth h in a lake. The bubble rises to the surface. Assume constant temperature and standard atmospheric pressure P above the lake. The volume of the bubble just before touching the surface will be (density of w

cover

Test Details

The expansion of unit mass of a perfect gas at constant pressure is shown in the diagram. Here

cover

Test Details

If pressure of a gas contained in a closed vessel is increased by 0.4% when heated by 1°C, the initial temperature must be

cover

Test Details

A closed vessel contains 8g of oxygen and 7g of nitrogen. The total pressure is 10 atm at a given temperature. If now oxygen is absorbed by introducing a suitable absorbent the pressure of the remaining gas in atm will be

cover

Test Details

Energy of all molecules of a monoatomic gas having a volume V and pressure P is 3/2PV. The total translational kinetic energy of all molecules of a diatomic gas as the same volume and pressure is             &nb

cover

Test Details

At standard temperature and pressure the density of a gas is 1.3 gm/ m3 and the speed of the sound in gas is 330 m/sec. Then the degree of freedom of the gas will be

cover

Test Details

The mean free path of nitrogen molecules at a pressure of 1.0 atm and temperature 0°C is 0.8 x 10-7m. If the number of density of molecules is 2.7 x 1025perm3, then the molecular diameter is

cover

Test Details

40 calories of heat is needed to raise the temperature of 1 mole of an ideal monoatomic gas from 20°C to 30°C at a constant pressure. The amount of heat required to raise its temperature over the same interval at a constant volume (R=2caloriemole

cover

Test Details

A monoatomic gas expands at constant pressure on heating. The percentage of heat supplied that increases the internal energy of the gas and that is involved in the expansion is

cover

Test Details

The value of Cp-Cv=1.00 R  for a gas in state A and Cp-Cv=1.06 R  in another state. If PA and PB denote the pressure and TA and TB denote the temperatures in the two states, then

cover

Test Details

When an ideal diatomic gas is heated at constant pressure, the fraction of the heat energy supplied which increases the internal energy of the gas is

cover

Test Details

The capacity of a vessel is 3 litres. It contains 6 gm oxygen, 8 gm nitrogen and 5 gm CO2 mixture at 27°C. If R = 8.31 J/mole ´ kelvin, then the pressure in the vessel in N/m2 will

cover

Test Details

Pressure versus temperature graph of an ideal gas of equal number of moles of different volumes are plotted as shown in figure. Choose the correct alternative

cover

Test Details

An ideal gas is initially at a temperature T and volume V. Its volume is increased by ΔV due to an increase in temperature ΔT, pressure remaining constant. The quantity δ= ΔV/VΔT  varies with temperature as

cover

Test Details

An experiment is carried on a fixed amount of gas at different temperatures and at high pressure such that it deviates from the ideal gas behaviour. The variation of PV/RT with P is shown in the diagram. The correct variation will correspond to       

cover

Test Details

Two containers of equal volume contain the same gas at pressures P1 and P2 and absolute temperatures T1 and T2 respectively. On joining the vessels, the gas reaches a common pressure P and common temperature T. The ratio P/

cover

Test Details

Two identical glass bulbs are interconnected by a thin glass tube. A gas is filled in these bulbs at N.T.P. If one bulb is placed in ice and another bulb is placed in hot bath, then the pressure of the gas becomes 1.5 times. The temperature of hot bath will be

cover

Test Details

A flask is filled with 13 gm of an ideal gas at 27°C and its temperature is raised to 52°C. The mass of the gas that has to be released to maintain the temperature of the gas in the flask at 52°C and the pressure remaining the same is

cover

Test Details

The expansion of an ideal gas of mass m at a constant pressure P is given by the straight line D. Then the expansion of the same ideal gas of mass 2m at a pressure P/ 2 is given by the straight line

cover

Test Details

An ideal monoatomic gas is confined in a cylinder by a spring-loaded piston if cross-section 8 x 10-3m2. Initially the gas is at 300K and occupies a volume of 2.4 x 10-3m3 and the spring is in a relaxed state. The gas is heated by a small he

cover

Test Details

Two identical containers each of volume V0 are joined by a small pipe. The containers contain identical gases at temperature T0 and pressure P0. One container is heated to temperature 2T0 while maintaining the other at the same temperature. The commo

cover

Test Details

The average degrees of freedom per molecule for a gas is 6. The gas performs 25 J of work when it expands at constant pressure. The heat absorbed by gas is

cover

Test Details

If the mean free path of atoms is doubled then the pressure of gas will become

cover

Test Details

The temperature, pressure and volume of two gases X and Y are T, P and V respectively. When the gases are mixed then the volume and temperature of mixture become V and T respectively. The pressure and mass of the mixture will be

cover

Test Details

A perfect gas at 27°C is heated at constant pressure to 327°C. If original volume of gas at 27°C is V then volume at 327°C is

cover

Test Details

If a given mass of gas occupies a volume of 10 cc at 1 atmospheric pressure and temperature of 100°C (373.15 K). What will be its volume at 4 atmospheric pressure; the temperature being the same

cover

Test Details

The kinetic energy of one gram mole of a gas at normal temperature and pressure is (R = 8.31 J/mole-K)

cover

Test Details

The molecules of a given mass of a gas have a rms velocity of 200 m/sec at 27°C and 1.0 x 105 N/m2 pressure. When the temperature is 127°C and pressure is 0.5 x 105 N/m2, the rms velocity

cover

Test Details

Gas at a pressure P0 in contained as a vessel. If the masses of all the molecules are halved and their speeds are doubled, the resulting pressure P will be equal to

cover

Test Details

The pressure P, volume V and temperature T of a gas in the jar A and the other gas in the jar B at pressure 2P, volume V/4 and temperature 2T, then the ratio of the number of molecules in the jar A and B

cover

Test Details

A gas at a certain volume and temperature has pressure 75 cm. If the mass of the gas is doubled at the same volume and temperature, its new pressure is

cover

Test Details

The root mean square speed of hydrogen molecules of an ideal hydrogen gas kept in a gas chamber at 0°C is 3180 m/s. The pressure on the hydrogen gas is (Density of hydrogen gas is 8.99 x 10-2 kg/m3, 1 atmosphere=1.01 x 105 N/m

cover

Test Details

A gas, is heated at constant pressure. The fraction of heat supplied used for external work is

cover

Test Details

Find the ratio of specific heat at constant pressure to the specific heat constant volume for NH3

cover

Test Details

Two gases occupy two containers A and B the gas in A, of volume 0.10 m3, exerts a pressure of 1.40 MPa and that in B of volume 0.15 m3 exerts a pressure 0.7 MPa. The two containers are united by a tube of negligible vo

cover

Test Details

On 0°C pressure measured by barometer is 760 mm. What will be pressure on 100°C

cover

Test Details

Hydrogen gas is filled in a balloon at 20°C. If temperature is made 40°C, pressure remaining same, what fraction of hydrogen will come out

cover

Test Details

If the intermolecular forces vanish away, the volume occupied by the molecules contained in 4.5 kg water at standard temperature and pressure will be given by

cover

Test Details

A gas at 27°C has a volume V and pressure P. On heating its pressure is doubled and volume becomes three times. The resulting temperature of the gas will be

cover

Test Details

A flask contains 10-3 m3 gas. At a temperature, the number of molecules of oxygen are 3.0 x 1022. The mass of an oxygen molecule is 5.3 x 10-26 kg and at that temperature the rms velocity of molecules is 400 m/s. T

cover

Test Details

A cylinder of capacity 20 litres is filled with H2 gas. The total average kinetic energy of translatory motion of its molecules is 1.5 x 105 J. The pressure of hydrogen in the cylinder is

cover

Test Details

The temperature of a gas is raised while its volume remains constant, the pressure exerted by a gas on the walls of the container increases because its molecules

cover

Test Details

40 calories of heat is needed to raise the temperature of 1 mole of an ideal monoatomic gas from 20°C to 30°C at a constant pressure. The amount of heat required to raise its temperature over the same interval at a constant volume (R=2caloriemole

cover

Test Details

The mean free path of nitrogen molecules at a pressure of 1.0 atm and temperature 0°C is 0.8 x 10-7m. If the number of density of molecules is 2.7 x 1025perm3, then the molecular diameter is

cover

Test Details

The adjoining figure shows graph of pressure and volume of a gas at two temperatures T1 and T2. Which of the following interferences is correct

cover

Test Details

The value of Cp-Cv=1.00 R  for a gas in state A and Cp-Cv=1.06 R  in another state. If PA and PB denote the pressure and TA and TB denote the temperatures in the two states, then

cover

Test Details

A monoatomic gas expands at constant pressure on heating. The percentage of heat supplied that increases the internal energy of the gas and that is involved in the expansion is

cover

Test Details

When an ideal diatomic gas is heated at constant pressure, the fraction of the heat energy supplied which increases the internal energy of the gas is

cover

Test Details

At standard temperature and pressure the density of a gas is 1.3 gm/ m3 and the speed of the sound in gas is 330 m/sec. Then the degree of freedom of the gas will be

cover

Test Details

Energy of all molecules of a monoatomic gas having a volume V and pressure P is 3/2PV. The total translational kinetic energy of all molecules of a diatomic gas as the same volume and pressure is

cover

Test Details

A closed vessel contains 8g of oxygen and 7g of nitrogen. The total pressure is 10 atm at a given temperature. If now oxygen is absorbed by introducing a suitable absorbent the pressure of the remaining gas in atm will be

cover

Test Details

The capacity of a vessel is 3 litres. It contains 6 gm oxygen, 8 gm nitrogen and 5 gm CO2 mixture at 27°C. If R = 8.31 J/mole ´ kelvin, then the pressure in the vessel in N/m2 will

cover

Test Details

Pressure versus temperature graph of an ideal gas of equal number of moles of different volumes are plotted as shown in figure. Choose the correct alternative

cover

Test Details

The expansion of unit mass of a perfect gas at constant pressure is shown in the diagram. Here

cover

Test Details

An air bubble of volume v0 is released by a fish at a depth h in a lake. The bubble rises to the surface. Assume constant temperature and standard atmospheric pressure P above the lake. The volume of the bubble just before touching the surface will be (density of w

cover

Test Details

At constant temperature on increasing the pressure of a gas by 5% will decrease its volume by

cover

Test Details

A box containing N molecules of a perfect gas at temperature T1 and pressure P1. The number of molecules in the box is doubled keeping the total kinetic energy of the gas same as before. If the new pressure is P2 and temperature T2, then

cover

Test Details

Two identical containers each of volume V0 are joined by a small pipe. The containers contain identical gases at temperature T0 and pressure P0. One container is heated to temperature 2T0 while maintaining the other at the same temperature. The commo

cover

Test Details

Two containers of equal volume contain the same gas at pressures P1 and P2 and absolute temperatures T1 and T2 respectively. On joining the vessels, the gas reaches a common pressure P and common temperature T. The ratio P/

cover

Test Details

The expansion of an ideal gas of mass m at a constant pressure P is given by the straight line D. Then the expansion of the same ideal gas of mass 2m at a pressure P/ 2 is given by the straight line

cover

Test Details

A flask is filled with 13 gm of an ideal gas at 27°C and its temperature is raised to 52°C. The mass of the gas that has to be released to maintain the temperature of the gas in the flask at 52°C and the pressure remaining the same is

cover

Test Details

If pressure of a gas contained in a closed vessel is increased by 0.4% when heated by 1°C, the initial temperature must be

cover

Test Details

An ideal gas is initially at a temperature T and volume V. Its volume is increased by DV due to an increase in temperature DT, pressure remaining constant. The quantity δ= ΔV/VΔT  varies with temperature as

cover

Test Details

An experiment is carried on a fixed amount of gas at different temperatures and at high pressure such that it deviates from the ideal gas behaviour. The variation of PV/RT with P is shown in the diagram. The correct variation will correspond to

cover

Test Details

An ideal monoatomic gas is confined in a cylinder by a spring-loaded piston if cross-section 8 x 10-3m2. Initially the gas is at 300K and occupies a volume of 2.4 x 10-3m3 and the spring is in a relaxed state. The gas is heated by a small he

cover

Test Details

Two identical glass bulbs are interconnected by a thin glass tube. A gas is filled in these bulbs at N.T.P. If one bulb is placed in ice and another bulb is placed in hot bath, then the pressure of the gas becomes 1.5 times. The temperature of hot bath will be

cover

Test Details

A cylinder contained 10 kg of gas at pressure 107 N/m2. The quantity of gas taken out of cylinder if final pressure is 2.5 x 106 N/m is (assume the temperature of gas is constant)

cover

Test Details

A balloon contains 500 m3 of helium at 27°C and 1 atmosphere pressure. The volume of the helium at – 3°C temperature and 0.5 atmosphere pressure will be

cover

Test Details

When volume of system is increased two times and temperature is decreased half of its initial temperature, then pressure becomes

cover

Test Details

Cathode rays are produced when the pressure is of the order of

cover

Test Details

Excess pressure of one soap bubble is four times more than the other. Then the ratio of volume of first bubble to another one is

cover

Test Details

The pressure of air in a soap bubble of 0.7cm diameter is 8mm of water above the pressure outside. The surface tension of the soap solution is

cover

Test Details

An air bubble of radius r in water is at a depth h below the water surface at some instant. If P is atmospheric pressure, d and T are density and surface tension of water respectively, the pressure inside the bubble will be

Coming Soon...