Theory Part 2
Property II:
(i) sin (sin-1 x) = x= cos (cos-1 x), for all x ∈ [-1, 1]
Property III:
(i) sin-1 (-x) = -sin-1 (x), for all x ∈ [-1, 1]
(ii) cos-1 (-x) = π - cos-1 (x), for all x ∈ [-1, 1]
(iii) tan-1 (-x) = -tan-1 x for all x ∈ R
(iv) cosec-1 (-x) = -cosec-1 x, for all x ∈ [-∞, -1] υ [1, ∞)
(v) sec-1 (-x) = π - sec-1 x, for all x ∈ [-∞, -1] υ [1, ∞)
(vi) cot-1 (-x) = π - cot-1 x, for all x ∈ R
Property IV:
(i) sin-1 x + cos-1 x = (π/2), for all x ∈ [-1, 1]
(ii) tan-1 x + cot-1 x = (π/2), for all x ∈ R
(iii) sec-1 x + cosec-1 x = (π/2), for all x ∈ (-∞, -1] υ [1, ∞)
Property V:
(i) sin-1 (1/x) = cosec-1 x, for all x ∈ (-∞, -1] υ [1, ∞)
(ii) cos-1 (1/x) = sec-1 x, for all x ∈ (-∞, -1] υ [1, ∞)
Property VI:
(i) sin-1 x = cos-1 (1 – x2)1/2 = tan-1 [x/(1 – x2)1/2]
= cot-1 [((1 – x2)1/2)/x] = sec-1 [1/(1 – x2)1/2] = cosec-1 (1/x), x ∈ (0, 1)
(ii) cos-1 x = sin-1 (1 – x2)1/2 = tan-1 [((1 – x2)1/2)/x]
= cot-1 [x/(1 – x2)1/2] = sec-1 (1/x) = cosec-1 [1/(1 – x2)1/2], x ∈ (0, 1)
(iii) tan-1 x = sin-1 [x/(1 + x2)1/2] = cos-1 [1/(1 + x2)1/2]
= cot-1 (1/x) = sec-1 [(1 + x2)1/2] = cosec-1 [((1 + x2)1/2)/x], x > 0
Property VII:
(i) sin (cos-1 x) = cos (sin-1 x) = (1 – x2)1/2, -1 ≤ x ≤ 1.
(ii) tan (cot-1 x) = cot (tan-1 x) = (1/x), x ∈ R, x ≠ 0.
(iii) cosec (sec-1 x) = sec (cosec-1 x) =. |x| > 1.