NCRT Miscellaneous Excercise
Question 1: Prove that: 2 cos(π /13)cos(9π /13)+ cos(3π /13)+ cos(5π /13)=0
Answer 1: L.H.S
=2 cos(π /13)cos(9π /13)+ cos(3π /13)+ cos(5π /13)=0
=2 cos(π /13)cos(9π /13)+ 2cos(4π /13)+ cos(-π /13)
=2 cos(π /13)cos(9π /13)+2 cos(4π /13)+ cos(π /13)
=2 cos(π /13)[cos(9π /13)+ cos(4π /13)]
=2 cos(π /13)[2 cos(π /2)cos(5π /26)]
=2 cos(π /13) x 2 x 0 x cos(5π /26)
=0=R.H.S
Question 2: Prove that: (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0
Answer 2: L.H.S. = (sin 3x + sin x) sin x + (cos 3x – cos x) cos x
= sin 3x sin x + sin2 x + cos 3x cos x – cos2 x
= cos 3x cos x + sin 3x sin x=(cos2 x – sin2 x)
=cos(3x-x)-cos 2x [cos(A-B)=cos A cos B + sin A sin B]
=cos 2x – cos 2x
=0
=R.H.S
Question 3: Prove that: (cos x + cos y)2 + (sin x – sin y)2 = 4 cos2 (x + y/2)
Answer 3: L.H.S = (cos x + cos y)2 + (sin x – sin y)2
= cos2 x + cos2 y +2 cos x cos y + sin2 x + sin2y – 2 sin x sin y
= (cos2 y + cos2 x)+(cos2 x + cos2 y)+2 (cos x cos y - sin x sin y)
= 1 + 1 + 2 cos (x + y) [cos (A+B)=(cos A cos B-sin A sin B)]
= 2 + 2 cos (x + y)
= 2 [1 + cos (x + y)]
= 2 [1 + 2 cos2 (x + y/2)-1] [cos 2A=2 cos2 A -1]
= 4 cos2 (x + y/2)
= R.H.S
Question 4: Prove that: (cos x – cos y)2 + (sin x – sin y)2 = 4 sin2 (x-y/2)
Answer 4: L.H.S. =(cos x – cos y)2 + (sin x – sin y)2
= cos2 x + cos2 y – 2 cos x cos y + sin2 x + sin2 y – 2 sin x sin y
= (cos2 x + sin2 x) – (cos2 y + sin2 y) – 2[cos x cos y + sin x sin y]
= 1+ 1 – 2[ cos(x-y)] [cos(A-B)=cos A cos B + sin A sin B]
=2[1-cos(x-y)]
=2[1-{1-2 sin2(x-y/2)}] [cos 2A=1-2 sin2 A]
=4 sin2 (x-y/2)=R.H.S
Question 5: Prove that: sin x + sin 3x + sin 5X + sin 7x=4 cos x cos 2x sin 4x
Answer 5: sin A + sin B=2 sin(A + B/2). cos(A – B/2).
It is known that
L.H.S= sin x + sin 3x + sin 5x + sin 7x
=(sin x + sin 5x) + (sin 7x)
=2 sin(x+5x/2).cos(x-5x/2)+ 2 sin(3x + 7x/2)cos(3x -7x/2)
= 2 sin 3x cos(-2x)+2 sin 5x cos(-2x)
=2 sin 3x cos 2x + 2 sin 5x cos 2x
=2 cos 2x [sin 3x + sin 5x]
=2 cos 2x [2 sin(3x + 5x/2). cos(3x – 5x/2)]
=2 cos 2x[2 sin 4x.cos(-x)]
= 4 cos 2x sin4x cos x=R.H.S
Question 6: Prove that:
Answer 6: It is known that
sin A + sin B=2 sin(A + B/2).cos(A-B/2), cos A + cos B=2 cos(A + B/2).cos(A-B/2)
L.H.S=
= tan 6x
=R.H.S
Question 7: Prove that: sin 3x + sin 2x – sin x=4 sin x cos(x/2)cis(3x/2)
Answer 7: L.H.S. =sin 3x + sin 2x – sin x
=sin 3x + (sin 2x – sin x)
=sin 3x+[2 cos(2x+x/2)sin(2x-x/2)] [sin A-sin B=2 cos(A+B/2)sin(A-B/2)]
=sin 3x +[2 cos(3x/2)sin(x/2)]
=sin 3x + 2 cos(3x/2)sin(x/2)]
=2 sin(3x/2).cos(3x/2)+2 cos(3x/2)sin(x/2) [sin 2A=2 sin A. cos B]
=2 cos(3x/2).[ sin(3x/2)+ sin(x/2)]
=2 cos(3x/2).2 sin x cos(x/2)
=4 sin x cos(x/2) cos(3x/2)=R.H.S.
Question 8: Find sin x/2, cos x/2, and tan x/2, if tan x=-4/3, x in quadrant II
Answer 8: Here, x is in quadrant II.
i.e., π/2 < x < π
⇒ π/4 < x/2 < π/2
Therefore, sin(x/2), cos(x/2) and tan(x/2)
all lies in first quadrant.
It is given that tan x=-4/3.
sec2 x=1 + tan2x=a+(-4/3)2=1+16/9=25/9
Therefore cos2x=9/25
⇒ cos x=±3/5
As x is in 2nd quadrant , cos x is negative.
cos x = -3/5
Now, cos x=2 cos2 (x/2-1)
⇒-3/5=2 cos2 (x/2-1)
⇒2 cos2 (x/2=2/5)
[Because cos(x/2) is positive]
Therefore
sin2x/2 + cos2x/2=1
⇒sin2(x/2)=1-1/5=4/5
[Because sin(x/2) is positive]
Thus, the respective values of sin(x/2), cos(x/2) and tan(x/2) are
Question 9: Find , sin(x/2), cos(x/2) and tan(x/2) for cos x=-1/3, x in quadrant III
Answer 9: Here, x is in quadrant III.
i.e., π < x < 3π/2
⇒ π /2 < x/2 < 3π/4
Therefore, cos(x/2) and tan(x/2) are negative, where as is positive. sin(x/2)
It is given that cos x=-1/3.
cos x=1-2sin2x/2
⇒sin2x/2=(1-cos x/2)
[Because sin(x/2) is positive]
Now
cos x=2 cos2(x/2)-1
[Because cos(x/2) is negative]
Thus, the respective values of sin(x/2), cos(x/2) and tan(x/2) are
Question 10: Find sin(x/2), cos(x/2) and tan(x/2), for x=1/4, x in quadrant II
Answer 10: Here, x is in quadrant II.
i.e., π/2 < x < π
⇒ π/2 < x/2 < π/2
Therefore, sin(x/2), cos(x/2), tan(x/2) are all positive.
It is given that sin x=1/4.
cos2x=1-sin2x=1-(1/4)2=1-1/16=15/16
(cos x is negative in quadrant II]
[Because sin(x/2) is positive]
[Because sin(x/2) is positive]
Thus, the respective values of sin(x/2), cos(x/2), tan(x/2)
are